
Abstract. Background: It is unclear whether radiomic
phenotypes of brain metastases (BM) are related to radiation
therapy prognosis. This study assessed whether a
convolutional neural network (CNN)-based radiomics model
which learned computer tomography (CT) image features
with minimal preprocessing, could predict early response of
BM to radiosurgery. Materials and Methods: Tumor images
of 110 BM post stereotactic-radiosurgery (SRS) (within 3
months) were assessed (Response Evaluation Criteria in
Solid Tumor, version 1.1) as responders (complete or partial
response) or non-responders (stable or progressive disease).
Datasets were axial planning CT images containing the
tumor center, and the tumor response. Datasets were
randomly assigned to training, validation, or evaluation
groups repeatedly, to create 50 dataset combinations that
were classified into five groups of 10 different dataset
combinations with the same evaluation datasets. The CNN
learned using training-group images and labels. Validation
datasets were used to choose the model that best classified
evaluation images as responders or non-responders. Results:
Of 110 tumors, 57 were classified as responders, and 53 as
non-responders. The area under the receiver operating
characteristic curve (AUC) of each CNN model for 50
dataset combinations ranged from 0.602 [95% confidence
interval (CI)=36.5-83.9%] to 0.826 [95% CI, 64.3-100%].
The AUC of ensemble models, which averaged prediction
results of 10 individual models within the same group,
ranged from 0.761 (95% CI=55.2-97.1%) to 0.856 (95%

CI=68.2-100%). Conclusion: A CNN-based ensemble
radiomics model accurately predicted SRS responses of
unlearned BM images. Thus, CNN models are able to predict
SRS prognoses from small datasets.

The classical use and role of tumor images in radiation therapy
planning has been restricted to defining treatment-target
boundaries. However, as the field of medical-image analysis
matures, it is expected that tumor imaging will include tumor
biological and physiological information, which could inform
treatment strategies. Radiomics is an emerging field of
imaging analysis that quantifies information hidden in tumor
images (1, 2). This concept is based on the conversion of
tumor phenotypes, as represented in digital tumor images, into
mineable high-dimensional feature data (3). Several studies
have applied radiomics to the prediction of cancer prognosis,
and demonstrated the potential of radiomic features to improve
decision-making (4-6). To predict clinical prognosis using
radiomic feature data, machine learning algorithms are
applied, which are trained on feature data to recognize patterns
and construct classification models after feature extraction (7).
Traditional radiomics approaches rely on manually pre-defined
features and hand-crafted feature extractions (Figure 1); recent
studies have indicated that such approaches can be effective
(4-6). However, the radiomics workflow is relatively
complicated and cumbersome, and it is impossible to uncover
features beyond those that were pre-defined. These reasons
may explain the low acceptability of radiomics in clinical
investigations. 

The convolutional neural network (CNN) classifier. An
artificial neural network is a machine-learning technique that
emulates an animal’s neural structure for the classification
of high-dimensional non-linear data or pattern recognition.
Neural networks comprise several vertical layers, and each
layer comprises numerous neural units. Each neural unit is
connected to those of the next layer with constant weight and

5437

Correspondence to: Won Il Jang, MD, Department of Radiation
Oncology, Korea Institute of Radiological & Medical Sciences, 75
Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea. Tel: +82
29702484, Fax: +82 29702412, e-mail: zzang11@kirams.re.kr

Key Words: Brain metastases, radiomics, machine learning,
radiosurgery, convolutional neural networks.

ANTICANCER RESEARCH 38: 5437-5445 (2018)
doi:10.21873/anticanres.12875

Prediction of Response to Stereotactic Radiosurgery for Brain
Metastases Using Convolutional Neural Networks

YU JIN CHA1,2, WON IL JANG1, MI-SOOK KIM1, HYUNG JUN YOO1, 
EUN KYUNG PAIK1, HEE KYUNG JEONG1 and SANG-MIN YOUN3

Departments of 1Radiation Oncology, and 3Neurosurgery,
Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea;

2Department of Bio and Brain Engineering,
Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea



bias. The initial weight and bias have random values. In a
general neural-network structure, the first layer is called the
input layer, while the final layer is called the output layer, as
it expresses the results of the task. Between the input and
output layers, there are hidden layers that perform constant
operations or data processing. The number and arrangement
of the hidden layers may be varied, or a layer for special
operations can be inserted depending on the features of the
task. When training data are input to the neural network, the
neural units of the input layer multiply the input data by the
connection weights and relay the product to the neural units
of the next layer. The neural units of the next layer then
generate an activation value by adding the sums of the values
generated from the previous layer to the bias and inputting
the value to an activation function. The activation value in
turn becomes the inputted value for the next layer. Through
this method, the output layer of a neural network presents
the final value for the input data of a neural network. If the
final output value differs from the targeted value, the
connection weight is adjusted in a process called learning. If
novel arbitrary data are inputted to an adequately trained
neural network, the neural network can generate a value
close to the target value according to the learned pattern. 

A CNN is a type of feed-forward artificial neural network
that is generally applied to image recognition. Categorizing
medical images using conventional machine-learning algorithms
requires a procedure involving pre-processing of the images,
defining the inherent features, and extracting the output. In
contrast, CNNs can automatically extract high-dimensional
features from the original images, learn the patterns, and
classify them (8). CNN was inspired by the neural structures of
the animal visual cortex. The fundamental principle behind
efficient learning of images by a CNN is the presence of a
hidden layer that performs convolution and pooling operations,
which is similar to the actual visual cortex (9).

CNN-based radiomics for brain metastases (BMs). CNNs
have shown high performance in the classification of both
natural and medical images (10-13). CNNs have the potential
to improve the acceptability and applicability of radiomics
because the approach requires minimal image preprocessing
and no feature detector (Figure 1). To our knowledge, CNN-
based radiomics has been used for tumor diagnosis (12) and
predicting chemotherapy outcome for lung cancer (13), but
not to predict radiation-therapy response. In this study, for
the first time, we investigated the performance of CNN-
based radiomics for predicting response after radiation
therapy. We aimed to predict the response to stereotactic
radiosurgery (SRS) for BMs, using CNN-based radiomics. 

BMs, which may originate from any primary site, are a
major cause of reduced quality of life, cognitive function,
and life expectancy (14). As only a minority of patients with
BMs are eligible for surgical resection (15), and SRS is a

relatively short, convenient, and noninvasive treatment
course, it has become a common treatment modality for
BMs. Moreover, BMs generally have a round shape and
clear tumor boundary; thus, they have an appropriate
geometry for radiomics research. Although several studies
have assessed factors that predict prognosis of SRS for BM,
including enhancement of patterns in CT images (16,17), as
far as we are aware, no attempts have been made to use
radiomics to predict the radio-response of BMs. 

The objectives of this study were, firstly, to predict the SRS
response of BMs using tumor images extracted from SRS
planning CT, and secondly, to demonstrate the applicability of
CNN-based radiomics combined with ensemble learning in the
clinical radiation therapy field, using a small dataset.

Materials and Methods

Patients, target tumors, and treatment. Medical records of all patients
who received SRS for BMs at the Korea Institute of Radiological and
Medical Sciences between 2007 and 2015 were analyzed. Patients
with no imaging follow-up within 3 months of receiving SRS were
excluded. Additional exclusions were patients with primary brain
cancer, receipt of SRS combined with whole-brain radiation therapy,
multiple BMs (more than five), skull-infiltrative BMs, and tumor with
a longest diameter larger than 3.5 cm or smaller than 1 cm. Finally,
89 patients and 110 tumors were included in this study. All tumors
were diagnosed by magnetic resonance (MR) imaging. SRS was
performed using CyberKnife (Accuracy Inc., Sunnyvale, CA, USA)
for 100 tumors, and RapidArc (Varian Medical System, Palo Alto,
CA, USA) for 10 tumors. The gross tumor volume (GTV) was
defined as the visible tumor extent on planning CT. The planning
target volume (PTV) was defined as the GTV plus a 0-2 mm margin.
Radiation doses were prescribed to the 80-95% isodose line of the
maximum dose to cover the PTV. Tumor and treatment characteristics
are summarized in Table I. 

Images and dataset acquisition. For this study, two kinds of data
were acquired from the treatment record for the 110 tumors. Firstly,
one axial slice of each tumor was extracted. This contained the
central point on the SRS planning CT images, as saved in the
picture archiving communication system and extracted with the
same CT window levels and widths for all tumors. Using the same
scale (151×151 pixels; c. 40 mm × 40 mm), a square section of the
image with tumor with a small portion of surrounding tissue was
cropped. The cropped image contained the axial tumor centrally and
the surrounding tissue marginally. The greatest tumor diameter
enrolled in our study was less than 35 mm, so that each cropped
image contained the entire axial tumor. No other image processing
was carried out. Compared to MR, CT images are acquired under
consistent, controlled conditions, such that if CT images are
extracted for model learning, bias can be minimized in comparisons
of images. MR data may have radiomic variations in images
acquired due to differences in contrast time, equipment upgrades
over time, and changes contrast agent use.

Secondly, the treatment response of each tumor in the 3 months
following SRS was obtained. As per the Response Evaluation
Criteria in Solid Tumor version 1.1 (RECIST 1.1) (18), the
treatment results for the 110 tumor images were labeled as either
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‘responder’ for those showing complete (CR) or partial (PR)
response, or as ‘non-responder’ for those showing stable (SD) or
progressive (PD) disease. The cropped image of the tumor and the
treatment results together defined a data point, resulting in a dataset
of 110 such points. 

Implementation and computation. In this study, CNNs featured an
architecture comprising a hidden layer and two convolution/max-
pooling layers (Figure 2). Image data were converted to a matrix of
pixels to be introduced in the input layer. Training used the drop-out
technique, which probabilistically selects and trains a subset of the
neurons in the hidden layer. This technique reduces overfitting in the
process of creating a multilayer-deep neural-network learning model,
thereby boosting overall performance (19). Between the final pooling
layer and output layer were two fully connected neural layers. These
performed additional feature extractions, and did not incorporate the
drop-out technique. The final output layer consisted of two neural
units. Outputs from the two neural units were compared to classify
the input data as ‘responder’ or ‘non-responder.’ A stochastic
gradient-descent algorithm, which is generally used in deep artificial
neural networks for processing large-scale data, was used to update
the connection weights of the neurons during learning (20). This
neural network was based on Google’s machine-learning framework
called TensorFlow (version 0.9) and configured in the Python

language. Amazon’s cloud GPU computing was used to enhance
performance during learning operations.

Training, validation, and evaluation. One hundred and ten datasets were
randomly classified into training, validation, and evaluation groups. This
random assignment was repeated 50 times to create 50 independent
combinations of datasets. Note that the following conditions were met
for the random assignment: Firstly, the 50 combinations were clustered
into five groups (A to E) of 10 combinations. Each group was assigned
the same evaluation datasets but different training and validation
datasets. Secondly, the ratio of responder to non-responder datasets
remained consistent across the five groups.

Next, the experiment for each dataset combination proceeded as
follows. Training datasets were used to train the neural networks. The
neural networks learned the radiomic features of responders and non-
responders by learning the labels that matched the training images.
However, learning performance can vary according to the initial
connection weights, which were randomly determined. Hence, the
validation datasets were used to validate performance during learning.
Validation proceeded by periodically presenting a validation image at
a fixed trial-interval to the neural network undergoing the learning
process. The network then predicted the matched label. When the
accuracy of prediction was low, learning was reinitialized and
restarted. When the network demonstrated good performance or did
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Table I. Tumor characteristics.

Characteristic                                                                            Responder (N=57)                         Non-responder (N=53)                              p-Value
                                                                                                                                                                     
Size, median (range), cm                                                              2.0 (1.0-3.3)                                       2.2 (1.2-3.3)                                      0.205*
Primary site, n (%)
   Lung                                                                                        20 (35%)                                            16 (30%)                                              0.051†
   Breast                                                                                       23 (40%)                                            13 (25%)                                                
   Rectum                                                                                       4 (7%)                                                 6 (11%)                                                
   Stomach                                                                                    3 (5%)                                                 0 (0%)                                                  
   Kidney                                                                                       2 (4%)                                                 5 (9%)                                                  
   Other                                                                                          5 (9%)                                              13 (25%)                                                
Location of BM, n (%)
   Cerebrum                                                                                43 (75%)                                            37 (70%)                                              0.520†
   Cerebellum                                                                              13 (23%)                                            13 (25%)                                                
   Brain stem                                                                                 1 (2%)                                                 3 (5%)                                                  
Patient age, years
   Median (range)                                                                        59 (14-92)                                          57 (43-76)                                            0.598*
Patient gender, n (%)
   Male                                                                                         22 (39%)                                            22 (42%)                                              0.430†
   Female                                                                                     35 (61%)                                            31 (58%)                                                
KPS Scale
   Median (range)‡                                                                      90 (40-100)                                        90 (50-100)                                          0.758*
Primary disease control, n (%)‡
   Yes                                                                                            32 (56%)                                            37 (73%)                                              0.076†
   No                                                                                            25 (44%)                                            14 (27%)                                                
Presence of extra-cranial metastases, n (%)‡
   Yes                                                                                            29 (51%)                                            37 (73%)                                              0.021†
   No                                                                                            28 (49%)                                            14 (27%)                                                
Systemic therapy, n (%)‡
   Yes                                                                                            27 (47%)                                            14 (28%)                                              0.033†
   No                                                                                            30 (53%)                                            37 (72%)                                                

BM: Brain metastasis; KPS: Karnofsky Performance Status. *Mann-Whitney U-test, †Chi-squared test. ‡N=51.



not show improved performance, learning was stopped and the model
was accepted and proceeded to the evaluation stage. That is,
validation was used to discover the best model among the candidate
models during training. Finally, an evaluation image was presented
to the neural network that completed learning to generate a
classification output. Each neural network was designed such that it
generated an output of 1 for an image determined to be a non-
responder and 0 for an image determined to be a responder.

Independently of the classification outputs from the 50 individual
neural network models, the classification outputs generated by the
neural networks of the same group (which shared the same
evaluation datasets) were averaged to determine the final result.
This model is defined as an ensemble model (Figure 3).
Performance of the ensemble model was evaluated using the area
under the receiver operating characteristic curve (AUC).

Results

Tumor and treatment characteristics. The neural networks
classified 57 images as responders and 53 images as non-
responders. The maximum tumor diameter was 1.0-3.3 cm in
the responder group (median=2.0 cm) and 1.2-3.3 cm in the

non-responder group (median=2.2 cm), with no significant
differences between the two groups. With regard to the primary
tumor site, the greatest number of tumors in the responder
group were primarily of breast (40%), followed by lung (35%),
rectum (7%), and other sites. In the non-responder group, the
most frequent site was lung (30%), followed by breast (25%),
rectum (11%), and other sites. The difference in the distribution
of primary tumors between the two groups approached
statistical significance (p=0.051). There was no statistically
significant difference between the responder and non-responder
groups in terms of the tumor’s intracranial position. Patient age
ranged from 14-92 years (median=59 years) in the responder
group and 43-76 years (median=57 years) in the non-responder
group; there was no significant difference in age between the
two groups. The two groups also did not significantly differ in
terms of patient sex and Karnofsky performance status scale.
Furthermore, there was no difference with respect to whether
the primary disease site was completely controlled by surgery
or radiation therapy compared to cases without such control.
However, there was a significant difference in response of
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Figure 1. Overview of methodological process of traditional (A) and convolutional neural networks (CNN)-based (B) radiomics. The process of
defining and extracting features to generate output is performed directly by the investigator in traditional radiomics but performed automatically
by an algorithm in a CNN-based model.

Figure 2. Convolutional neural networks architecture for computed tomography images of brain metastases in our study. This neural network
comprised an input layer, two convolution/pooling layers, and two fully connected layers. The output layer generated a classification output as
either R (responder) or N (non-responder) for the input image. 
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Figure 3. Outline of the ensemble prediction model. Eighty-seven datasets that were not assigned to the evaluation group were assigned to the
training and validation groups in 10 varying combinations to create 10 individual convolutional neural networks models. The final result was
generated by taking the average of the classification results for the same evaluation image from 10 individual models. 

Figure 4. Ensemble model for predicting early responses to stereotactic radiosurgery and the receiver operating characteristic curves for individual
neural-network model groups A to E, respectively, that comprised the ensemble model. The area under the curve data are given in Table III.



extra-cranial metastases, except for the primary site, and for
those who did not receive systemic therapy for BMs (Table I).
Systemic therapy refers to chemotherapy, hormone therapy, and
target therapy, depending on the type of primary tumor used
alone or in combination. Specific analysis of systemic therapy
regimen was not performed.

The total dose of radiation ranged from 19-48 Gy (median
24 Gy) in 1-5 fractions in the responder group and from 16-
36 Gy in 1-4 fractions in the non-responder group, with no
significant differences between the two groups. The two
groups also did not significantly differ in the biologically
effective dose, or treatment platform (Table II).

Prediction results. The independent treatment prediction
results for groups A to E were as follows. The AUC of the
predictions generated by each of the 10 neural networks in
group A ranged from 0.693 [95% confidence interval
(CI)=47.0-91.6%] to 0.826 (95% CI=70.3-100%) (median
0.778). The AUC of the ensemble model, which determined
the result based on the average of the outputs generated by
each of the 10 neural networks, was 0.856 (95% CI=68.2-
100%). When the cut-off point was set to 0.5 for the
ensemble model, the sensitivity and specificity for prediction
of non-responders were 82% and 83%, respectively. The
results for groups B to E are detailed in Table III. 

In summary, the AUC generated by the ensemble model
for the evaluation data of groups A through E were 0.856
(95% CI=68.2-100%, p=0.004), 0.856 (95% CI=70.2-100%,
p=0.004), 0.799 (95% CI=60.8-99.0%, p=0.015), 0.761
(95% CI=55.2-97.1%, p=0.034), and 0.826 (95% CI=63.7-
100%, p=0.008), respectively, which were either comparable
to or superior to the results generated from individual neural
networks (Figure 4).

Discussion

The emergence of radiomics has provided an impetus to
research assessing whether tumor images can predict
radiation therapy prognosis. Mattonen et al. reported that
radiomics analysis significantly predicts the probability of

recurrence of lung cancer after radiation therapy (21).
However, there has been no study that applied CNN-based
radiomics to predict the prognosis of radiation therapy.
Hence, this study analyzed radiation therapy planning CT
images with CNNs to determine whether CNNs can predict
early response to SRS. 

We made two assumptions prior to beginning this study.
The first was that microenvironments within tumors are
determined by the pathophysiology of the tumor, and thereby
are related to the tumor’s response to treatment (22). The key
concept of radiomics is that if the microenvironment of a
tumor is exhibited as a characteristic phenotype in images,
analyzing the images would enable the prediction of treatment
response. George et al. (16) and Goodman et al. (17) reported
that local control post-SRS is associated with the contrast
patterns in BM and MRI, but these studies are limited in that
they only qualitatively classified the contrast patterns.
Evidence for the presence of a correlation between BM
pathophysiology and their phenotypes in images is lacking in
the literature. Therefore, we assumed that phenotypes of BMs
shown in CT images reflect the tumor microenvironment,
which determines the prognosis of radiation therapy. 

The second assumption was that BMs are generally round
with clear margins (23). Thus, we assumed that BMs display
similar radiomic phenotypic patterns radially from a central
point of the tumor. Based on this assumption, we would be able
to identify the overall radiomic features of the tumor using a
cross-sectional CT image containing the center of the tumor. 

In this analysis, the CNN-based machine-learning model was
taught pairs of tumor images and responses to SRS and then
predicted SRS responses for unlearned images. Fifty independent
neural networks used for the analysis showed a prediction AUC
ranging from 0.602 to 0.826 (median=0.695). However, the
AUC values of the ensemble models, each of which comprised
10 individual neural networks that assessed the same evaluation
datasets, ranged from 0.761 (95% CI=55.2-97.1%) to 0.856
(95% CI=68.2-100%), thus showing better predictive
performance than the individual neural networks. We cannot
compare the performance of this model to that of another model,
as no studies have used radiomics to predict BM responses to
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Table II. Treatment characteristics.

Characteristic                                                                            Responder (N=57)                        Non-responder (N=53)                             p-Value 

Total dose, median (range), Gy                                                 24 (19-48)                                          23 (16-36)                                            0.395*
No. of fractions, median (range)                                                 3 (1-5)                                                 3 (1-4)                                                  
Biological effective dose, median (range) Gy10                      60 (33-94)                                          60 (30-100)                                          0.094*
Treatment platform, n (%)                                                                                                                                                                                   0.587†
   Cyberknife                                                                               51 (89%)                                            49 (92%)                                                
   Linac (RapidArc)                                                                      6 (11%)                                               4 (8%)                                                  

*Mann-Whitney U-test, †Chi-squared test.



Cha et al: Prediction of Response to Radiosurgery for Brain Metastases

5443

Ta
ble

 II
I. 
Pe
rfo
rm
an
ce
 (p
re
dic
tio
n 
of 
tre
atm

en
t r
es
po
ns
es
) o
f i
nd
ivi
du
al 
co
nv
olu
tio
na
l n
eu
ra
l n
etw
or
ks
 (C
NN
) a
nd
 en
se
mb
le 
mo
de
ls.

Gr
ou

p 
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
   I

nd
ivi

du
al 

CN
N 

mo
de

l   
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

 E
ns

em
ble

 
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
mo

de
l

    
    

    
    

    
    

    
    

    
    

    
   1

    
    

    
    

    
    

 2 
    

    
    

    
    

  3
    

    
    

    
    

   4
    

    
    

    
    

5  
    

    
    

    
    

 6
    

    
    

    
    

    
7  

    
    

    
    

    
  8

    
    

    
    

    
   9

    
    

    
    

    
 10

    
    

    
    

    
 

A
 A

UC
    

    
    

    
    

    
    

  0
.78

0  
    

    
    

    
0.7

39
    

    
    

    
0.6

93
    

    
    

    
0.7

31
    

    
    

 0.
82

6  
    

    
    

  0
.78

0 
    

    
    

    
0.7

77
    

    
    

    
0.7

80
    

    
    

    
0.7

80
    

    
    

   0
.77

7 
    

    
    

 0.
85

6
    
p-

Va
lue

    
    

    
    

    
    

  0
.02

3  
    

    
    

    
0.0

53
    

    
    

    
0.1

17
    

    
    

    
0.0

60
    

    
    

 0.
00

8  
    

    
    

  0
.02

3 
    

    
    

    
0.0

25
    

    
    

    
0.0

23
    

    
    

    
0.0

23
    

    
    

   0
.02

5 
    

    
    

 0.
00

4
    

95
% 

CI
    

    
    

    
    

0.5
80

-0
.98

1 
    

  0
.52

7-
0.9

51
    

 0.
47

0-
0.9

16
    

 0.
51

5-
0.9

47
   0

.64
3-

1.0
00

    
 0.

58
0-

0.9
81

    
  0

.57
4-

0.9
79

    
  0

.58
0-

0.9
81

    
  0

.58
0-

0.9
81

    
0.5

74
-0

.97
9  

  0
.68

2-
1.0

00
    

Se
ns

iti
vit

y (
%)

    
    

    
    

73
    

    
    

    
    

   7
3  

    
    

    
    

   6
4  

    
    

    
    

   5
5 

    
    

    
    

 82
    

    
    

    
    

 73
    

    
    

    
    

  6
4 

    
    

    
    

    
73

    
    

    
    

    
 73

    
    

    
    

    
64

    
    

    
    

   8
2

    
Sp

ec
ifi

cit
y (

%)
    

    
    

    
83

    
    

    
    

    
   7

5  
    

    
    

    
   7

5  
    

    
    

    
   9

2 
    

    
    

    
 83

    
    

    
    

    
 83

    
    

    
    

    
  9

2 
    

    
    

    
    

83
    

    
    

    
    

 83
    

    
    

    
    

92
    

    
    

    
   8

3
B 

 A
UC

    
    

    
    

    
    

    
  0

.65
2  

    
    

    
    

0.7
42

    
    

    
    

0.7
84

    
    

    
    

0.7
39

    
    

    
 0.

68
9  

    
    

    
  0

.60
2 

    
    

    
    

0.8
26

    
    

    
    

0.7
39

    
    

    
    

0.6
44

    
    

    
   0

.61
0 

    
    

    
 0.

85
6

    
p-

Va
lue

    
    

    
    

    
    

  0
.21

8  
    

    
    

    
0.0

49
    

    
    

    
0.0

21
    

    
    

    
0.0

53
    

    
    

 0.
12

4  
    

    
    

  0
.40

6 
    

    
    

    
0.0

08
    

    
    

    
0.0

53
    

    
    

    
0.2

42
    

    
    

   0
.37

2 
    

    
    

 0.
00

4
    

95
% 

CI
    

    
    

    
    

0.4
22

-0
.88

2 
    

  0
.53

2-
0.9

53
    

 0.
58

6-
0.9

82
    

 0.
52

7-
0.9

51
   0

.46
5-

0.9
14

    
 0.

36
5-

0.8
39

    
  0

.64
3-

1.0
00

    
  0

.52
7-

0.9
51

    
  0

.41
2-

0.8
76

    
0.3

75
-0

.84
5  

  0
.70

2-
1.0

00
    

Se
ns

iti
vit

y (
%)

    
    

    
    

64
    

    
    

    
    

   8
2  

    
    

    
    

   8
2  

    
    

    
    

   7
3 

    
    

    
    

 55
    

    
    

    
    

 45
    

    
    

    
    

  8
2 

    
    

    
    

    
73

    
    

    
    

    
 45

    
    

    
    

    
64

    
    

    
    

   8
2

    
Sp

ec
ifi

cit
y (

%)
    

    
    

    
67

    
    

    
    

    
   6

7  
    

    
    

    
   7

5  
    

    
    

    
   7

5 
    

    
    

    
 83

    
    

    
    

    
 75

    
    

    
    

    
  8

3 
    

    
    

    
    

75
    

    
    

    
    

 83
    

    
    

    
    

58
    

    
    

    
   8

3
C 

 A
UC

    
    

    
    

    
    

    
  0

.69
3  

    
    

    
    

0.6
10

    
    

    
    

0.6
10

    
    

    
    

0.6
97

    
    

    
 0.

73
9  

    
    

    
  0

.73
5 

    
    

    
    

0.6
48

    
    

    
    

0.6
55

    
    

    
    

0.6
93

    
    

    
   0

.64
4 

    
    

    
 0.

79
9

    
p-

Va
lue

    
    

    
    

    
    

  0
.11

7  
    

    
    

    
0.3

72
    

    
    

    
0.3

72
    

    
    

    
0.1

10
    

    
    

 0.
05

3  
    

    
    

  0
.05

6 
    

    
    

    
0.2

30
    

    
    

    
0.2

07
    

    
    

    
0.1

17
    

    
    

   0
.24

2 
    

    
    

 0.
01

5
    

95
% 

CI
    

    
    

    
    

0.4
70

-0
.91

6 
    

  0
.37

5-
0.8

45
    

 0.
37

5-
0.8

45
    

 0.
47

5-
0.9

18
   0

.52
7-

0.9
51

    
 0.

52
1-

0.9
49

    
  0

.41
7-

0.8
79

    
  0

.42
6-

0.8
84

    
  0

.47
0-

0.9
16

    
0.4

12
-0

.87
6  

  0
.60

8-
0.9

90
    

Se
ns

iti
vit

y (
%)

    
    

    
    

64
    

    
    

    
    

   6
4  

    
    

    
    

   6
4  

    
    

    
    

   7
3 

    
    

    
    

 64
    

    
    

    
    

 66
    

    
    

    
    

  5
5 

    
    

    
    

    
73

    
    

    
    

    
 64

    
    

    
    

    
45

    
    

    
    

   9
1

    
Sp

ec
ifi

cit
y (

%)
    

    
    

    
75

    
    

    
    

    
   5

8  
    

    
    

    
   5

8  
    

    
    

    
   6

7 
    

    
    

    
 75

    
    

    
    

    
 83

    
    

    
    

    
  7

5 
    

    
    

    
    

58
    

    
    

    
    

 75
    

    
    

    
    

83
    

    
    

    
   7

5
D

 A
UC

    
    

    
    

    
    

    
  0

.73
9  

    
    

    
    

0.6
52

    
    

    
    

0.6
48

    
    

    
    

0.6
55

    
    

    
 0.

65
9  

    
    

    
  0

.73
9 

    
    

    
    

0.7
46

    
    

    
    

0.6
52

    
    

    
    

0.6
59

    
    

    
   0

.69
7 

    
    

    
 0.

76
1

    
p-

Va
lue

    
    

    
    

    
    

  0
.05

3  
    

    
    

    
0.2

18
    

    
    

    
0.2

30
    

    
    

    
0.2

07
    

    
    

 0.
19

6  
    

    
    

  0
.05

3 
    

    
    

    
0.0

45
    

    
    

    
0.2

18
    

    
    

    
0.1

96
    

    
    

   0
.11

0 
    

    
    

 0.
03

4
    

95
% 

CI
    

    
    

    
    

0.5
27

-0
.95

1 
    

  0
.42

2-
0.8

82
    

 0.
41

7-
0.8

79
    

 0.
42

6-
0.8

84
   0

.43
1-

0.8
87

    
 0.

52
7-

0.9
51

    
  0

.53
8-

0.9
54

    
  0

.42
2-

0.8
82

    
   0

.43
1-

0.8
7 

    
0.4

75
-0

.91
8  

  0
.55

2-
0.9

71
    

Se
ns

iti
vit

y (
%)

    
    

    
    

73
    

    
    

    
    

   6
4  

    
    

    
    

   5
5  

    
    

    
    

   7
3 

    
    

    
    

 82
    

    
    

    
    

 73
    

    
    

    
    

  9
1 

    
    

    
    

    
64

    
    

    
    

    
 82

    
    

    
    

    
73

    
    

    
    

   8
2

    
Sp

ec
ifi

cit
y (

%)
    

    
    

    
75

    
    

    
    

    
   6

7  
    

    
    

    
   7

5  
    

    
    

    
   5

8 
    

    
    

    
 50

    
    

    
    

    
 75

    
    

    
    

    
  5

8 
    

    
    

    
    

67
    

    
    

    
    

 50
    

    
    

    
    

67
    

    
    

    
   7

5
E 

 A
UC

    
    

    
    

    
    

    
  0

.73
9  

    
    

    
    

0.7
05

    
    

    
    

0.6
48

    
    

    
    

0.7
01

    
    

    
 0.

68
9  

    
    

    
  0

.65
2 

    
    

    
    

0.6
93

    
    

    
    

0.7
39

    
    

    
    

0.6
55

    
    

    
   0

.65
2 

    
    

    
 0.

82
6

    
p-

Va
lue

    
    

    
    

    
    

  0
.05

3  
    

    
    

    
0.0

97
    

    
    

    
0.2

30
    

    
    

    
0.1

03
    

    
    

 0.
12

4  
    

    
    

  0
.21

8 
    

    
    

    
0.1

17
    

    
    

    
0.0

53
    

    
    

    
0.2

07
    

    
    

   0
.21

8 
    

    
    

 0.
00

8
    

95
% 

CI
    

    
    

    
    

0.5
27

-0
.95

1 
    

  0
.48

6-
0.9

23
    

 0.
41

7-
0.8

79
    

 0.
48

1-
0.9

21
  0

.46
5-

00
.91

4 
   0

.42
2-

0.8
82

    
  0

.47
0-

0.9
16

    
  0

.52
7-

0.9
51

    
  0

.42
6-

0.8
84

    
0.4

22
-0

.88
2  

  0
.63

7-
1.0

00
    

Se
ns

iti
vit

y (
%)

    
    

    
    

73
    

    
    

    
    

   9
1  

    
    

    
    

   5
5  

    
    

    
    

   8
2 

    
    

    
    

 55
    

    
    

    
    

 64
    

    
    

    
    

  6
4 

    
    

    
    

    
73

    
    

    
    

    
 73

    
    

    
    

    
64

    
    

    
    

   8
2

    
Sp

ec
ifi

cit
y (

%)
    

    
    

    
75

    
    

    
    

    
   5

0  
    

    
    

    
   7

5  
    

    
    

    
   5

8 
    

    
    

    
 73

    
    

    
    

    
 67

    
    

    
    

    
  7

5 
    

    
    

    
    

75
    

    
    

    
    

 58
    

    
    

    
    

67
    

    
    

    
   8

3

AU
C,

 A
rea

 un
de

r t
he

 re
ce

ive
r o

pe
rat

ing
 ch

ara
cte

ris
tic

s c
ur

ve
; C

I=
co

nf
ide

nc
e i

nte
rv

al.



radiation therapy. However, the sensitivity and specificity of the
ensemble models for recognizing non-responders were superior
when the cut-off value was set to 0.5. As the ensemble technique
increases the number of datasets used for learning (24,25), we
speculate that this approach could compensate for the problem
of small datasets in radiomics research. 

Furthermore, considering the promising predictive
performance found in this study, the assumption that
radiological phenotypes are correlated with microenvironments
that determine the tumor’s treatment response may be
supported. There were no statistically significant differences in
other major parameters between the responder and non-
responder groups, except for the presence of extra-cranial
metastases and systemic therapy (Tables I and II). Thus, tumor
radiological phenotypes may be more likely predictive of
treatment response than other clinical factors. However, it
seems that the presence of extra-cranial metastases and receipt
of systemic therapy may affect intra-cranial tumor burden, and
may partially relate to local control of BMs. 

We only used one axial image, which contained the center
of the tumor, for analysis instead of using the entire image
data. When limited to BMs, it is reasonable to assume that
one cross-sectional image containing the center of the tumor
represents the overall radiomic features of the tumor.
Furthermore, the use of one cross-sectional image extracted
from the planning CT images for analysis, as in this study,
may improve clinical applicability. 

However, the design of this study has some limitations.
Firstly, evidence for the effectiveness of a single fraction SRS
for BMs has been established, but there is a lack of evidence
for effectiveness of multi-fraction SRS for BMs. Nevertheless,
a linear-quadratic model was introduced to simplify the
problem in order to compensate for differences in biological
treatment effects between the two groups. However, multi-
fraction SRS has a high fraction size, which makes it difficult
to compare strict doses between single and multi-fraction SRS.
Second, systemic therapy needs to be considered as an
important factor affecting local control of tumors. However,
analysis of local control taking into consideration the types of
systemic therapies and the details of regimens was not
performed in this study. Thirdly, we used CT images that can
be obtained under consistent conditions and that most
appropriately reflect the timing of treatment initiation in model
analysis. However, if MR images were available with
consistent conditions and imaging parameters, it might be
possible to improve the predictive accuracy by developing
MR-based machine learning models that incorporate more
detailed radiomic information.

We also need to review data that failed to accurately predict
treatment outcome. Although we did not perform dataset-
specific analysis of prediction failures, the following reasons
may be involved. Firstly, CNN is known to be capable of
learning high-dimensional features of images, but a great deal

of learning data is required to achieve good performance (26).
However, our data only comprised 87 sets, which is a
relatively small number, even considering the ensemble
learning approach. The small data size hindered the ability of
the predictive model to learn generalized boundaries of
radiomic phenotypes that distinguished responders from non-
responders. Secondly, tumor responses PR and SD were
labeled as responder and non-responder, respectively, as per
RECIST version 1.1. However, the demarcations for PR and
SD are very thin, and it is unclear whether tumors that show
PR and those that show SD can be viewed as having different
radiomic properties. Thus, it is possible that the predictive
models generated conflicting results for tumors that were
between PR and SD. Thirdly, other predictors of tumor
treatment may exist in addition to the clinical factors analyzed
in this study. As we did not control for potential predictors,
our results should be carefully interpreted. Fourthly, the
findings of progression at the 3-month follow-up imaging of
BMs did not exclude the possibility of pseudoprogression due
to edema or hemorrhage. Indeed, making a clinical distinction
between progression and pseudoprogression is not easy.
Despite these limitations, this study demonstrated the
possibility of predicting BM response to SRS through CNN-
based radiomic analysis, even in a small dataset. Future
studies should address these limitations and utilize multicenter
data to improve the predictive performance of the model so as
to produce data useful for clinical treatment decisions. 

Conclusion

A CNN-based ensemble radiomics model that learned SRS
from planning CT images for BMs and known early
responses predicted the SRS responses of unlearned images
of BMs with high accuracy. Hence, the radiomic phenotypes
of BMs shown in CT images might be correlated with tumor
response to SRS. This study is the first to suggest the use of
CNN models to predict radiation therapy prognoses with
small-scale data. However, additional studies are required to
improve the performance of this model so that it may be
utilized to help make clinical treatment decisions. 
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