
Abstract. Background: We report here imaging of the
behavior of αv integrin linked to green fluorescent protein
(GFP) in human osteosarcoma cells colonizing the lung of
nude mice. Materials and Methods: 143B osteosarcoma cells
expressing αv integrin–GFP were generated by transfection of
an αv integrin–GFP fusion-gene vector pCMV–AC– ITGAV–
GFP. In order to generate experimental lung metastases, 143B
osteosarcoma cells (1×106), stably expressing αv integrin–
GFP, were injected intravenously via the tail vein. The
osteosarcoma cells were transplanted orthotopically in the tibia
of nude mice in order to generate spontaneous metastases.
Lungs were harvested and imaged by confocal microscopy
within 1 hour. Results: In the experimental lung-metastasis
model, extravasating and deformed osteosarcoma cells
expressing αv integrin–GFP were observed. Pseudopodia of
the osteosarcoma cells contained small puncta of αv integrin–
GFP. In early-stage spontaneous lung metastasis, tumor emboli
were observed in pulmonary vessels. At high magnification,
small αv integrin–GFP puncta were observed in the tumor
embolus. In late-stage spontaneous metastasis, tumor emboli
were also observed in pulmonary vessels. Invading cancer cells
with strong expression of αv integrin–GFP were observed at

the margin of the tumor emboli. Conclusion: The results of this
study demonstrate that molecular dynamics of αv integrin–
GFP can be imaged in lung metastasis, which will allow
further understanding of the role of αv integrin in this process.
The results also suggest a general concept for imaging
molecular behavior in vivo.

The αv integrin subfamily consists of at least five members
including αvβ1, αvβ3, αvβ5, αvβ6, and αvβ8 (1) and have
been implicated in tumor progression (2-5), including
osteosarcoma (6). In a previous study, we used a powerful
subcellular in vivo imaging model to demonstrate how an anti-
integrin antibody inhibits seeding to and growth of
osteosarcoma cells on the lung (7). The 143B human
osteosarcoma cell line, expressing red fluorescent protein
(RFP) in the cytoplasm and green fluorescent protein (GFP)
in the nucleus, was established. Such double-labeled cells
enable imaging of apoptosis and mitosis and other nuclear–
cytoplasmic dynamics. Using these double-labeled
osteosarcoma cells, single cancer-cell seeding in the lung after
i.v. injection of osteosarcoma cells was imaged in real time
(7). The anti-β1 integrin monoclonal antibody, AIIB2, greatly
inhibited the seeding of cancer cells on the lung (experimental
metastasis), while a control antibody had no effect. AIIB2 also
significantly inhibited spontaneous lung metastasis from
143B-GFP-RFP tumors growing in the tibia but not primary
tumor growth, possibly due to inhibition of lung seeding of
the cancer cells, as imaged in the experimental metastasis
study. AIIB2 treatment also increased survival of mice with
orthotopically growing 143B-RFP (7).

We then began to develop imaging of molecular dynamics
in vivo. For this purpose, we used 143B osteosarcoma cells
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expressing an αv integrin–GFP fusion gene in order to
visualize the molecular dynamics of αv integrin in
osteosarcoma cells interacting with RFP-expressing blood
vessels using color-coded imaging (8).

We previously developed subcellular in vivo imaging (9-
34). In the present report, we demonstrate subcellular
imaging of αv integrin behavior in osteosarcoma cells
during lung metastasis. In this study, we imaged the
molecular dynamics of αv integrin–GFP in osteosarcoma
cells (34) during experimental and spontaneous lung
metastasis in nude mice.

Materials and Methods
Cells. The 143B human osteosarcoma cell line was maintained with
RPMI-1640 medium (Irvine Scientific, Santa Ana, CA, USA)
containing 10% fetal bovine serum (FBS) (Omega Scientific, San
Diego, CA, USA) and 1% penicillin/streptomycin at 37˚C in a
humidified incubator with 5% CO2.

Establishment of human osteosarcoma cells expressing αv integrin–
GFP. The pCMV6-AC-ITGAV-GFP vector, containing αv integrin
linked to GFP, was obtained from OriGene Technologies (Rockville,
MD, USA). 143B cells were transformed to express αv integrin–
GFP as follows: At 80% confluency, cultures were transfected with
pCMV-AC-ITGAV-GFP using Lipofectamine LTX (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instruction.
After transfection, stable cells were selected with G418 (800 μg/ml)
(Sigma-Aldrich, St. Louis, MO, USA), starting at 24 h after
transfection. Stable colonies were selected and maintained in RPMI-
1640 medium containing 10% FBS and 500 μg/ml G418 (8, 35). 

Experimental and spontaneous lung metastasis models in nude mice.
Nude (nu/nu) mice were bred and housed in a barrier facility
(AntiCancer Inc., San Diego, CA, USA). To image experimental lung
metastases of nude mice, 143B cells (1×106) expressing αv integrin–
GFP were injected into the tail vein of 4- to 5-week-old nude mice.
Twenty-four hours after injection, nude mice were euthanized with a
ketamine mixture (10 μl ketamine HCl, 7.6 μl xylazine, 2.4 μl
acepromazine maleate, and 10 μl water) (Butler-Schein, Dublin, OH,
USA). Lungs were harvested from each mouse at necropsy and were
placed on a glass slide with a cover. To image spontaneous lung
metastases in nude mice, 143B cells (1×106) expressing αv integrin–
GFP, were transplanted into the left tibia of 4- to 5-week-old nude
mice as previously described (36). Mice were euthanized 4 and 8
weeks after implantation, and lungs were harvested and observed. All
animal studies were conducted in accordance with the principals and
procedures outlined in the NIH Guide for the Care and Use of
Laboratory Animals under assurance number A3873-1.

Imaging. Imaging was performed with an FV 1000 laser-scanning
confocal microscope (Olympus, Tokyo, Japan) with a XLUMPLFL
20× (0.95 NA) water-immersion objective (37). GFP was excited at
488 nm. Collagen fibers were imaged in reflectance mode with
excitation at 488 nm, and scattered (reflected) photons were
collected at the same wavelength. Images were produced with
FV10-ASW Fluoview software (Olympus) and ImageJ (NIH,
Bethesda, MD, USA) and were not modified beyond the standard
adjustment of intensity levels.

Results and Discussion

143B cells expressing αv integrin–GFP. 143B αv integrin–
GFP cells have strikingly bright GFP fluorescence in the
cytoplasm in vitro (Figure 1A). Fibronectin is an
extracellular ligand binding to αv integrin (37). When 143B
αv integrin–GFP cells were seeded on a fibronectin-coated
dish (BD Pharmingen, San Diego, CA, USA), punctate
expression of αv integrin–GFP was observed interacting with
fibronectin coated on the culture dish (Figure 1B).

Imaging 143B αv integrin–GFP experimental lung
metastases in nude mice. To understand the molecular
dynamics of αv integrin–GFP in osteosarcoma experimental
lung metastasis, 143B αv integrin–GFP cells were injected
into the tail vein of nude mice. Twenty-four hours after
injection, lungs were harvested and observed by confocal
microscopy. A single cancer cell with small αv integrin–GFP
puncta was observed on the surface of the lung (Figure 2A).
Extravasating and deformed osteosarcoma cells expressing
αv integrin–GFP were also observed (Figure 2B). There were
multiple pseudopodia of osteosarcoma cells with small αv
integrin–GFP puncta (Figure 2C). These results suggested
that the behavior of αv integrin is associated with cancer-cell
adaptation to the pulmonary microenvironment at an early
stage of lung metastasis.

Imaging of early-stage 143B αv integrin–GFP spontaneous
lung metastases. In order to image the molecular dynamics
of αv integrin–GFP in osteosarcoma cells during
spontaneous lung metastasis, we transplanted osteosarcoma
cells into the tibia of nude mice to generate a primary bone
tumor, which subsequently spontaneously generated lung
metastases. Four weeks after implantation, lungs were
harvested and observed. Tumor emboli were observed in
pulmonary vessels. The expression of αv integrin–GFP was
scattered in the emboli (Figure 3A). With higher
magnification, small αv integrin–GFP puncta were also
observed in the tumor embolus (Figure 3B). Osteosarcoma
cells adjacent to lung tissue had puncta strongly expressing
αv integrin–GFP (Figure 3C). Metastatic cells around a
small vessel, strongly expressed diffuse αv integrin–GFP
(Figure 3D).

Imaging of late-stage spontaneous lung metastases of 143B
αv integrin–GFP cells. In order to image the behavior of αv
integrin–GFP in osteosarcoma cells in late-stage spontaneous
lung metastases, lungs were harvested 8 weeks after
orthotopic implantation of 143B cells into the tibia and
examined. Tumor emboli were observed in pulmonary
vessels (Figure 4A). Invading cancer cells with strong
expression of αv integrin–GFP were observed at the margin
of tumor emboli (Figure 4A). Spontaneously invading
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osteosarcoma cells had extensive αv integrin–GFP puncta
(Figure 4B). With higher magnification, αv integrin–GFP
puncta were readily imaged at the subcellular level (Figure
4C) and pseudopodia with small αv integrin puncta were
observed (Figure 4D).

The in vivo molecular imaging technology and mouse
models of osteosarcoma metastasis described in the present
report will be a very valuable tool for investigating the
molecular dynamics of αv integrin and other proteins in
lung metastasis of osteosarcoma (7, 19, 38). The results also
suggest a general concept for imaging molecular behavior
in vivo.
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Figure 2. Imaging of αv integrin–green fluorescent protein (GFP) molecular dynamics in experimental lung metastases of 143B osteosarcoma cells
in nude mice. A: Small αv integrin–GFP puncta in the cytoplasm of a 143B cell. B: Extravasating deformed 143B cells have αv integrin–GFP
puncta. C: Multiple pseudopodia of 143B cells with small αv integrin–GFP puncta. Bar: 20 μm. FV1000 confocal microscopy. 

Figure 1. 143B cells expressing αv integrin–green fluorescent protein (GFP). A: 143B cells stably expressing αv integrin–GFP in vitro. Bar: 100
μm. B: Punctate expression of αv integrin–GFP was observed at the bottom of the cells binding to fibronectin coated on the plastic cell-culture
dish. Bar: 50 μm. FV1000 confocal microscopy.
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Figure 3. Imaging of αv integrin–green fluorescent protein (GFP) molecular dynamics in 143B spontaneous lung metastases in nude mice (early
stage). A: Tumor embolus in a large vessel in the lung. Diffuse expression of αv integrin–GFP in the 143B osteosarcoma cells in the tumor embolus.
Bar: 100 μm. B: Small αv integrin–GFP puncta observed at higher magnification (×40). Bar: 50 μm. C: Osteosarcoma cells adjacent to lung tissue
with puncta strongly expressing αv integrin–GFP (arrow). Bar: 50 μm. D: Cells strongly expressing αv integrin–GFP surrounded a smaller vessel
(V). Bar: 50 μm. FV1000 confocal microscopy. T: Tumor. V: Vessel.
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Figure 4. Imaging of αv integrin–green fluorescent protein (GFP) molecular dynamics in spontaneous lung metastases of 143B cells in nude mice
(late stage). A: Tumor embolus in pulmonary vessel. Invading cancer cells with strong expression of αv integrin–GFP at the margin of the embolus
(arrows). Bar: 50 μm. B: Invading cancer cells with more αv integrin–GFP puncta. Bar: 50 μm. C: αv integrin–GFP puncta higher magnification
(×60). Bar: 20 μm. D: Pseudopodium of 143B cells with small αv integrin–GFP puncta. Bar: 30 μm. FV1000 confocal microscopy.
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