
Abstract. Background/Aim: Many efforts have been made to
identify candidate genes involved in cancer susceptibility. The
present study aimed to investigate the association between
Arg194Trp (XRCC1), Ala222Val (MTHFR) and Arg521Lys
(EGFR) polymorphisms (SNPs) and their susceptibility to
gastric and breast carcinoma cancer in patients from Brazilian
Amazon, controlling population structure interference.
Materials and Methods: The SNPs were genotyped by
TaqMan® SNP Genotyping Assays. Ancestry was estimated by
analysis of a panel with 48 ancestry informative markers.
Results: Logistic regression analysis showed an inverse
association with a 10% increase in African and European
ancestry and cancer risk (odds ratio (OR)=1.919 and 0.676,
respectively). In a preliminary Chi-square analysis a positive
association between Arg521Lys (EGFR) polymorphism and
carcinoma susceptibility was found (p=0.037); however, when
two different methodologies to control population structure
bias were utilized, this association was lost (p=0.064 and
p=0.256). Conclusion: Genetic ancestry influence gastric and
breast cancer risk and highlight the importance of population
structure inference in association studies in highly admixed
populations, such as those from Brazilian Amazon.

Cancer is the second cause of death worldwide (1). Many
efforts have been made in order to identify candidate genes
that are possibly involved in cancer susceptibility (2). The
X-ray repair cross-complementing group 1 (XRCC1), the

methylenetetrahydrofolate reductase (MTHFR) and the
epidermal growth factor receptor (EGFR) genes have
important functions for DNA synthesis, repair and cellular
proliferation making them key candidates to cancer
susceptibility studies (3-5). 

The XRCC1 gene, located on chromosome 19 (19q13.2),
encodes a crucial scaffold protein that is closely associated
with the base excision repair (BER) pathway (3). Single-
nucleotide polymorphisms (SNPs) in DNA repair genes have
been described to impair their repair capacity, increasing the
risk of cancer development (6). One of the most extensively
studied SNPs is the Arg194Trp (rs1799782), on exon 6 of
XRCC1 gene (7), which occurs in a highly conserved linker
region. This polymorphism could alter the interaction of
XRCC1 with other DNA repair proteins within the BER
complex, thus increasing the chances of DNA damage (8).

The MTHFR gene, located on chromosome 1 (1p36.3) (9),
catalyzes the conversion of 5,10-methylenetetrahydrofolate
to 5-methyltetrahydrofolate, which provides a methyl group
to convert homocysteine to methionine. This step is
important for DNA synthesis and gene regulation through the
methylation process and on the availability of uridylates and
thymidylates for DNA synthesis and repair (4). The SNP
Ala222Val (rs1801133), on exon 4, is a functional variant,
which results in diminished enzyme activity (10).

The epidermal growth factor receptor (EGFR), also known
as ERBB1 or HER-1, is a member of the human epithelial
receptor tyrosine kinase family, encoded by a gene located
on chromosome 7 (7p12.1-12.3) (5). The EGFR molecule is
a type I transmembrane glycoprotein with intrinsic tyrosine
kinase activity that contributes to signaling cascades with
multiple pro-carcinogenic effects, including cell
proliferation, inhibition of apoptosis, angiogenesis and
invasion (5, 11, 12). The polymorphic variant Arg521Lys
(rs2227983), on exon 13, is one of the key polymorphisms
within the EGFR signaling pathway and is arising from a
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single nucleotide change in the extracellular domain within
subdomain IV of EGFR (13, 14).

Although several studies have investigated these genes
on cancer susceptibility, the results are conflicting among
studies in different populations (15-17). To date,
polymorphisms in these genes were poorly investigated in
the Brazilian population. The Brazilian population is
formed by three major ancestral populations, Europeans,
Africans and Native Americans and presenting different
degrees of admixture from South to North regions (18, 19).
The highly admixture nature of the Brazilian population
makes the population structure a serious concern to
association-studies (20-22). In this way, the aim of this
study was to investigate the association between
Arg194Trp (XRCC1), Ala222Val (MTHFR) and Arg521Lys
(EGFR) polymorphisms with the susceptibility to develop
gastric and breast carcinoma cancers in a population from
Pará state, Brazil, controlling population structure
interference.

Materials and Methods

Study population. A total of 136 patients with gastric and breast
cancer (63 gastric carcinomas and 73 breast carcinomas) and 127
healthy subjects (controls) were included in the present study. The
samples were collected in João de Barros Barreto University
Hospital and Ophir Loyola Hospital, both in Belém, Pará, Brazil.
The control group was composed by 127 subjects without cancer,
born in Pará, Brazil. Local ethics committee approved this study
(protocol numbers 3505/2004 and 043/2008) and written informed
consent was obtained from all participating subjects.

Genomic DNA extraction. Genomic DNA was extracted from
peripheral blood leukocytes using a phenol-chloroform procedure
(23). The DNA concentration and quality was determined by
spectrophotometry (Themo Scientific NanoDrop 100; NanoDrop
Technologies, Wilmington, DE, USA) at 260/280nm. 

Genotyping of SNPs. The XRCC1Arg194Trp (rs1799782),
MTHFRAla222Val (rs1801133) and EGFRArg521Lys (rs2227983)
gene polymorphisms were genotyped by TaqMan® SNP Genotyping
Assays according to the manufacturer’s protocol (Applied
Biosystems, Foster, CA, USA). 

Estimates of individual ancestry proportions. To estimate the
subjects’ individual genetic ancestry proportions from ancestral
African, European and Native American populations, a panel of 48
ancestry informative markers (IAMs) was performed, as previously
described (18).

Statistical analysis. Allele and genotype frequencies were estimated
by gene counting. Deviation from Hardy-Weinberg equilibrium was
assessed by Chi-square tests with Bonferroni correction. Differences
between cases and control samples on age and ancestry were
estimated by the t-test, Mann-Whitney tests and Fisher's exact test.
The individual proportions of European, African and Native
American genetic ancestry were estimated using the STRUCTURE
software 2.3.3 (24), assuming three parental populations
(Europeans, Africans and Native Americans) and running with
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Table I. Age and genetic ancestry of cancer and control groups.

Characteristics Cases Controls p-Value*

N 136 127
Age 69.07±14.7 23.10±4.62 <0.001
Genetic Ancestry

African ancestry 0.26±0.11 0.20±0.08 <0.001
European ancestry 0.44±0.13 0.52±0.13 <0.001
Native American 0.29±0.12 0.28±0.11 0.170

Values are expressed as mean±SD. *Mann-Whitney test.

Table II. Categorical distribution of African and European ancestry in
controls and cancer cases.

Characteristics Controls n (%) Cancer n (%)

African ancestry
0.01-0.10 10 (8.1) 3 (2.3)
0.10-0.20 56 (45.2) 38 (28.8)
0.20-0.30 41 (33.1) 46 (34.8)
0.30-0.40 16 (12.9) 29 (22.0)
0.40-0.50 1 (0.8) 11 (8.3)
0.50-0.60 0 (0) 4 (3.0)
0.60-0.70 0 (0) 1 (0.8)
≥0.70 0 (0) 0 (0)
p-Value <0.001

European ancestry
0.01-0.10 0 (0) 0 (0)
0.10-0.20 1 (0.8) 2 (1.5)
0.20-0.30 7 (5.6) 19 (14.4)
0.30-0.40 18 (14.5) 34 (25.8)
0.40-0.50 23 (18.5) 33(25.0)
0.50-0.60 44 (35.5) 21 (15.9)
0.60-0.70 24 (19.4) 22 (16.7)
≥0.70 7 (5.6) 1 (0.8)
p-Value <0.001

Table III. Odds ratio (OR) and 95% confidence intervals (CIs) of
logistic regression model with and without age adjusted for genetic
ancestry fractions. 

Characteristic OR Cancer 95% CI p-Value

African ancestry
Risk variation per 10% 1.919 (1.455-2.530) <0.001
increase
Age-adjusted model 6.115 (1.482-25.227) 0.012

European ancestry
Risk variation per 10% 0.676 (0.558-0.820) <0.001
increase
Age-adjusted model 0.186 (0.051-0.682) 0.011



100.000 burn-in period and 100.000 Markov Chain Monte Carlo
repetitions after burning (25). The STRAT software v. 1.1 (26) was
performed to case and control association analysis with 10,000
simulations (27). STRAT utilizes the STRUCTURE output to test
for association in the presence of population stratification based on
individual ancestry information.

Logistic regression models were performed to investigate
African and European genetic ancestry association with cancer
and genotypes’ association with cancer controlling for genetic
ancestry influence.

The Mann-Whitney, t-test, Chi-square and logistic regression tests
were performed using the SPSS v.18 (SPSS, Chicago, IL, USA).
Statistical significance was defined as a two-tailed p-value <0.05.

Results

Individual ancestry proportions are shown in Figure 1. Based
on these data we determined the mean value of genetic
ancestry of all subjects. Age and mean ancestry of cancer
patients and healthy subjects are shown in Table I. The case
group was older (69.07±14.7 years) than the control group
(23.10±4.62 years) (p<0.001). The African contribution was
more prevalent in the case group (p<0.001), whereas the
European contribution was more frequent in the control
group (p<0.001). No statistical difference was found for
Native American ancestry. 

When comparing the categorical distribution of African
and European ancestry in the study population, we
observed similar results: different distribution of these
ancestries in cancer and control groups (African and
European p<0.001) (Table II). To determine African and
European ancestry influence in cancer susceptibility a
logistic regression was performed with and without age as
confounder (Table III). In both models, a proportional
increase in African ancestry was correlated with cancer risk

(odds ratio (OR)=1.919 and 6.115), whereas the increase
in European ancestry was inversely correlated with cancer
(OR=0.676 and 0.186) (Table III).

Genotype and allelic distribution of Arg194Trp (XRCC1),
Ala222Val (MTHFR) and Arg521Lys (EGFR) in control and
cancer patients is depicted in Table IV. The genotype
frequencies were in Hardy-Weinberg equilibrium (p>0.05). 

In the Chi-square analysis without ancestry correction,
XRCC1 (Arg194Trp) and MTHFR (Ala222Val) polymor -
phisms were not associated with carcinoma susceptibility
(p=0.241 and p=0.134, respectively); however, EGFR
(Arg521Lys) polymorphism was associated with cancer
susceptibility (p=0.037) (Table IV). Two multivariate analyses
were performed to control the ancestry influence in association
analysis. After the logistic regression model with African and
European ancestry as co-variants, no significant association
was found (Table IV); however, MTHFR and EGFR presented
borderline p values (pADJUSTED=0.053 and 0.064 respectively).
When STRAT analysis was performed to correct structure
bias, no significant association was found (Table IV).

Discussion

Gastric and breast carcinomas are the two most common
cancers in the North region of Brazil. In the present study,
the effect of Arg194Trp (XRCC1), Ala222Val (MTHFR) and
Arg521Lys (EGFR) polymorphisms on cancer susceptibility
was investigated for the first time in a highly admixed
Brazilian population.

The admixed population structure is a major concern for
genetics studies in American countries (18, 19, 28, 29).
Population structure bias could increase the number of false-
positive or false-negative results. In studies where allele
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Figure 1. Genetic ancestry admixture of cancer and control groups. Genetic ancestral composition of 136 patients with gastric and breast cancer
(Block 4) and 127 controls (Block 5). Each individual ancestry is depicted as a column, whereas color represents the proportion of ancestry estimated
for that individual (African, red; European, green; Native American (NA), blue). Blocks 1, 2 and 3 represent the ancestral populations previously
investigated (1=African, 2=European, 3=NA) (20). Genetic ancestry was estimated using the STRUCTURE software.



distribution is different among the sub-populations and the
general disease risk varies among these sub-populations,
population structure acts as a major confounder in case-
control associations (30-34).

The present study showed a strong and inverse African
and European genetic ancestry influence in cancer risk in
the admixed Brazilian population; this influence was
carefully taken in account when genetic association was
performed. In a preliminary Chi-square analysis a positive
association between Arg521Lys (EGFR) polymorphism and
carcinoma susceptibility was found (p=0.037); however,
when two different methodologies to control population
structure bias were utilized, this association was lost
(p=0.064 and p=0.256). Kittles et al. (28) found a similar
effect of population structure among African American for
prostate cancer. Ignoring potential population stratification
within this population, a strong positive association
between the CYP3A4 variant and disease was observed
(p=0.007). However, after correction of potential popu -
lation structure, there was an increase in the p value to
0.254 suggesting that this structure may have led to the
initial false-positive result (28). Both Arg194Trp (XRCC1)
and Ala222Val (MTHFR) did not show any association to
cancer susceptibility in the study population (p>0.05);
therefore, several studies investigating these variants
present conflicting results as population structure was not

taken into account, thus influencing the inconsistency
across the results reported (15, 17, 34-36).

There exist several methods to estimate genetic ancestry
and identify population stratification (33, 34). In the present
study, a panel of 48 IAMs, able to estimate both individual
and global ancestry proportions, was performed (18). This
panel has already been used in other studies concerning to
association with diseases (37-40).

The present work included two unrelated analyses to avoid
the population stratification effect in a case control association
study. Despite the small sample size, our results demonstrate
the potential problem of population structure and highlight the
importance to identify and solve this particular issue in
association studies, especially in populations with highly ethnic
admixture, like the Brazilian Amazon population. 
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