
Abstract. The aim of the present study was to investigate:
(i) the possibility of sensitizing cancer cells to anticancer
drugs using the redox modulator 2-deoxy-D-glucose (2-
DDG); (ii) to find such combinations with synergistic
cytotoxic effect; (iii) and to clarify the role of reactive oxygen
species (ROS) for induction of apoptosis and cytotoxicity
through these combinations. The study covers 15 anticancer
drugs – both conventional and new-generation. Four
parameters were analyzed simultaneously in Jurkat leukemia
cells, treated by drugs or 2-DDG (separately or in
combination): cell viability, induction of apoptosis, levels of
ROS, and level of protein-carbonyl products. Very well-
expressed synergistic cytotoxic effects were found after 48-h
treatment of Jurkat cells with 2-DDG in combination with:
palbociclib, everolimus, lonafarnib, bortezomib, and
barasertib. The synergistic cytotoxic effect of everolimus with
2-DDG was accompanied by very strong induction of
apoptosis in cells, but a very strong reduction of ROS level.
Changes in the levels of protein-carbonyl products were not
detected. The synergistic cytotoxic effect of barasertib with
2-DDG was accompanied by very strong induction of
apoptosis in cells, without any increase of ROS levels, but
with an enhancement of protein-carbonyl products.

Over 50 years' experience in free radical biology and
medicine has shown the crucial role of redox signaling in
carcinogenesis (1-9). The cells and tissues of healthy
mammals are characterized by a low steady-state level of

reactive oxygen species (ROS) and a constant level of
reducing equivalents, while cancer cells are characterized by
increased levels of ROS and reducing equivalents (7). Cancer
cells are also characterized by an abnormal production of
NADP(H) and thiols (e.g. glutathione) as a result of
accelerated glycolysis (the Warburg effect) and the pentose-
phosphate cycle. However, these reducers are rapidly
consumed to maintain accelerated anabolism, which is
necessary for cell proliferation and immortalization.

A moderate increase in ROS can promote cell proliferation
and differentiation (10). However, extremely excessive
amounts of ROS can cause irreversible oxidative damage to
bio-macromolecules, and leads to apoptosis and cell death
(5). Therefore, maintaining ROS homeostasis at low levels is
crucial for normal cell survival, while moderate enhancement
of ROS is associated with abnormal cancer cell growth and
disruption of redox homeostasis (5).

Prolonged function of cells at abnormal steady-state levels
of ROS provokes genetic mutations, which makes such cells
well-adapted to oxidative stress. This process is the basis of
malignant transformation. Cancer cells are usually
characterized by an increased antioxidant capacity (11). The
cells that survive intrinsic oxidative stress mobilize a set of
adaptive mechanisms that not only activate ROS-scavenging
systems to cope with the stress, but also inhibit apoptosis.
Such adaptation contributes to malignant transformation,
metastasis and resistance to anticancer drugs (12).

Harris et al. reported that normal epithelial cells exposed
to low, but continuous levels of exogenous oxidants become
resistant to subsequent oxidative stress, (13). This
observation suggests that cells can adapt and survive under
certain levels of oxidative stress. Those cells that survive
oxidative stress are likely to have acquired adaptive
mechanisms to counteract the potential toxic effects of
elevated ROS and promote cell-survival pathways (10). Nonn
et al. reported that Harvey rat sarcoma viral (HRAS)
oncogene-transformed cells, which exhibit increased
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superoxide and hydrogen peroxide levels, are also
characterized by increased levels of antioxidants (e.g.
peroxiredoxin-3 and thioredoxin peroxidase) in comparison
to their non-cancerous parental cells (14). Their enhanced
antioxidant capability is likely to serve as a compensatory
mechanism to evade ROS-induced apoptosis. As such, the
abrogation of this adaptation mechanism could be an
attractive strategy for preferentially affecting cancer cells and
may therefore have promising therapeutic implications (5).

Our recent data on experimental animals showed that
reductive processes dominate over oxidative processes in
the tissues of healthy organism, while oxidation dominates
over reduction in the tissues (cancerous and non-cancerous)
of cancer-bearing organism (7-9). Moreover, the tissue
redox status is very sensitive to cancer progression and
anticancer therapy (9). These data suggest that tissue redox
status could be a diagnostic marker, a therapeutic target,
and a hallmark for evaluation and planning of therapeutic
strategy against cancer.

It is widely accepted that conventional anticancer drugs
increase intracellular levels of ROS and induce cytotoxic
effects in both cancer and normal cells (15-19). The harmful
side-effects of chemotherapy are usually due to ROS-
mediated mechanism(s) and disturbance of redox
homeostasis of non-cancer cells and tissues. Studies
demonstrated that using natural or synthetic substances
affecting cellular redox homeostasis (redox-modulators) in
combination with chemotherapy can protect normal cells
against oxidative stress (16, 18-20). However, it was found
that conventional antioxidants may, in fact, reduce the
therapeutic effect of the anticancer drug.

A promising strategy to achieve therapeutic selectivity and
efficiency in cancer is to take advantage of the fundamental
difference between cancer cells and normal cells in their
biochemical metabolism (21). The targeting of unique
biochemical alterations in cancer cells might be a feasible
approach to achieve therapeutic activity and selectivity and
perhaps to prevent the development of drug resistance and
side-effects (5).

One of the most prominent metabolic alterations in cancer
cells is the increase in aerobic glycolysis and the dependency
on glycolytic pathway for ATP synthesis, known as the
Warburg effect. Targeting the glycolytic pathway may
preferentially kill malignant cells or at least sensitize these
cells to conventional chemotherapy or radiotherapy.

One of the most widely used inhibitors of glycolysis is 2-
deoxy-D-glucose (2-DDG), a structural analog of glucose,
differing at the second carbon atom by the substitution of
hydroxyl group with hydrogen (21-28). 2-DDG undergoes
facilitated diffusion into cells via glucose transporters. It
selectively accumulates in cancer cells by metabolic trapping
because of increased uptake and high intracellular levels of
hexokinase or phosphorylating activity due to accelerated

glycolysis. Once inside the cells, 2-DDG is phosphorylated by
hexokinase, with formation of 2-DDG-6-phosphate, which is
not metabolized and blocks the glycolytic pathway (21-28).

Many studies have shown that 2-DDG affects energy
metabolism, cell proliferation kinetics, radiation-induced
DNA repair, and micronuclei formation in cancer cells (29-
32). The treatment of cancer cells with 2-DDG limited the
synthesis of NADPH by 50% in comparison with non-treated
cells (22). 2-DDG induces intracellular ATP depletion (23,
24), disruption of thiol metabolism (23, 25-28, 33, 34) and
eventually induction of oxidative stress, mainly in cancer
cells. All these alterations result in disturbance of redox
homeostasis of cancer cells by 2-DDG without any
significant influence on the viability of normal cells.

The aim of the present study was to investigate: (i) the
possibility of sensitizing cancer cells to anticancer drugs
using redox-modulator 2-DDG; (ii) to find combinations
with a synergistic cytotoxic effect; (iii) and to clarify the role
of ROS in the induction of apoptosis and cytotoxicity by
those combinations. The study covers 15 anticancer drugs –
conventional and new-generation. 

Materials and Methods

Cells and treatment protocol. The experiments were performed on
the cancer cell line Jurkat (Hayashibara Chem. Lab., Okayama,
Japan), derived from patients with acute lymphoblastic leukemia.
The cells were cultured in RPMI-1640 medium (Sigma-Aldrich,
Steinheim, Germany), supplemented with 10% heat-inactivated fetal
bovine serum (FBS)(Gibco, Auckland, New Zealand) and antibiotics
(100 U/ml penicillin and 100 μg/ml streptomycin)(Gibco), in a
humidified atmosphere at 37˚C with 5% CO2. All cells were
collected by centrifugation (1,000 ×g, 10 min) and replaced in a
fresh medium without antibiotics before treatment with anticancer
drugs.

The drugs were dissolved in dimethyl sulfoxide (DMSO; suitable
for cell culture)(Sigma-Aldrich) or phosphate-buffered saline (PBS;
10 mM, pH 7.4). The final concentration of DMSO in the cell
suspension did not exceed 1%. At this concentration, DMSO did not
influence cell viability.

The drugs were applied to the cells (1×106 cell/ml) at the
concentrations below (single dose) and incubated at different time
intervals in a cell incubator. At each time interval, aliquots were
used for cell viability assay.

The cells were incubated with redox-modulator, drug, or drug
plus redox modulator at the following concentrations: 250 μM 2-
DDG (Sigma), 0.25 μM palbociclib (Selleckchem, Huston, TX,
USA), 0.5 μM PI-103 (Selleckchem), 5 μM Everolimus
(Selleckchem), 0.5 μM lonafarnib (Selleckchem), 0.1 μM ABT-737
(Selleckchem), 0.1 μM doxorubicin (Sigma), 0.5 μM bleomycin
(Noppon Kayaku Co., Tokyo, Japan), 0.1 μM AZD-7762 (Sigma),
0.01 μM MLN-2238 (Selleckchem), 0.025 μM MG-132 (Wako,
Tokyo, Japan), 10 μM lomustine (Sigma), 2.5 μM cisplatin
(Selleckchem), 0.025 μM BEZ-235 (Selleckchem), 0.01 μM
bortezomib (Selleckchem), 0.05 μM or 0.01 μM barasertib
(Selleckchem). The selected concentrations of drugs and 2-DDG
induce about 20% inhibition of Jurkat cell growth.

ANTICANCER RESEARCH 35: 6623-6632 (2015)

6624



Cell viability assays. Cell viability was analyzed using trypan blue
staining and Countess™ Automated Cell Counter (Invitrogen,
Oregon, USA) at very precise standardization of the measurements.
Three independent experiments (with two repetitive measurements
for each experiment) were performed for each sample. Non-treated
cells were used as controls. Data are presented as the mean±SD.

Intracellular ROS assay. The amount of ROS was analyzed using
OxiSelect™ In vitro ROS/RNS Assay Kit – Green Fluorescence
(Cell Biolabs, Inc., San Diego, CA, USA). The method is based on
the use of the fluorogenic probe 2',7'-dichlorodihydrofluorescein
DiOxyQ (DCFH-DiOxyQ). In the cytosol, the probe is deacetylated
to the non-fluorescent 2',7'-dichlorodihydrofluorescein (DCFH).
DCFH reacts rapidly with ROS and reactive nitrogen species
(RNS)(predominantly H2O2, ROO•, NO, ONOO−) with formation
of the fluorescent product 2',7'-dichlorodihydrofluorescеin (DCF).
The intensity of DCF fluorescence (λex=480 nm, λem=530 nm) is
proportional to the amount of ROS/RNS in the biological sample.

The amount of ROS/RNS was calculated by calibration curve
based on DCF standard solutions in PBS. The measurements were
performed on a Tecan Infinite F200 PRO (Tecan Austria GmbH,
Mannedorf, Austria) microplate reader. Briefly, the cells (1×106

cells/ml) were collected by centrifugation (1000× g, 10 min) and
lysed using 300 μl of 0.1% sodium dodecylsulfate (SDS; dissolved in
PBS) within 30 min on ice. The lysates were adjusted to equal protein
concentration (range 1-10 mg/ml) using PBS. Protein concentration
was analyzed by Bradford assay. Each sample was subjected to
ROS/RNS assay, according to the manufacturer’s instructions.

Protein-carbonyl assay. The amount of protein-carbonyl products was
analyzed using OxiSelect™ Protein Carbonyl Spectrophotometric
Assay Kit (Cell Biolabs, Inc., San Diego, CA, USA). The most
common products of protein oxidation in biological samples are the
protein-carbonyl derivatives of proline, arginine, lysine and threonine.
These derivatives are chemically stable and serve as markers of
oxidative stress. The analysis of these products is based on
derivatization of the carbonyl groups with dinitrophenylhydrazine
(DNFH) with formation of protein-hydrazone. The amount of protein-
hydrazone was detected spectrophotometrically at 375 nm.

Briefly, the cells (1×106 cells/ml) were collected by
centrifugation (1,000 ×g, 10 min) and lysed using 300 μl of 0.1%
SDS (dissolved in PBS) within 30 min on ice. The lysates were
adjusted to equal protein concentration (in the range 1-10 mg/ml)
using PBS. Protein concentration was analyzed by Bradford assay.
Each sample was subjected to protein-carbonyl assay, according to
the manufacturer’s instructions. Oxidized bovine serum albumin
(Cell Biolabs, Inc.) was used as a standard.

Apoptosis assay. The induction of apoptosis was analyzed by the
expression of phosphatidylserine (PSer) on the cell surface, using
fluorescein isothiocyanate (FITC)-Annexin V Apoptosis Detection
Kit (BioVision, Milpitas, CA, USA). Briefly, the cells (1.0×106

cells/ml) were incubated with drug, redox modulator or their
combination, under the conditions mentioned above. At each time-
point the cells were collected by centrifugation (1,000 ×g, 10 min),
washed twice with PBS containing 2.5 mM CaCl2 (annexin V-
binding buffer), and re-suspended in the same buffer. One hundred
microliters of the cell suspension were incubated with 5 μl of FITC-
annexin V for 10 min at room temperature in a dark place. The cells
were washed three time with annexin V-binding buffer and finally

were re-suspended in 500 μl of the same buffer. FITC-annexin V,
bound to PSer exposed on the cell surface, was detected
spectrofluorimetrically at λem=535 nm and λex=488 nm, using a
Tecan Infinite F200 PRO microplate reader (Tecan Austria GmbH).

Results and Discussion
The cells were treated with: (i) drug only; (ii) 2-DDG only;
and (iii) combination of drug and 2-DDG. To distinguish
synergistic cytotoxic effects from antagonistic/additive
effects in the tested combinations, we calculated the effect
of each combination on cell proliferation as a percentage of
the effect of the respective drug applied alone. The general
idea is illustrated by Figure 1. Each sample treated with drug
only (in the absence of 2-DDG) was considered as a
respective control (100% proliferative activity; Figure 1 –
columns in grey). The effect of each combination (drug + 2-
DDG) was calculated as a percentage of this control (Figure
1 – columns in black). The effect of 2-DDG was calculated
as a percentage of other control untreated cells (the
proliferative activity in this sample was considered 100%).
The grey line in Figure 1 indicates the effect of 2-DDG
(applied separately) on cell proliferation. In the case of drug
plus 2-DDG, the data located to the left of the grey line
reflect synergistic cytotoxic effects, while the data located to
the right of the grey line represent antagonistic effects. All
data matching the grey line reflect an additive affect.

Data in Figure 2 demonstrate the proliferation of Jurkat
cells treated with 2-DDG and drugs, alone and in
combination, within 24 and 48 h. At the selected
concentrations, the cytotoxicity of each drug (applied
separately) varied from ~10-20% after 24-h incubation to
~20-30% after 48-h incubation. The cytotoxicity of 2-DDG
ranged from 7% to 15%, depending on incubation time.

At 24 h of treatment, most combinations were
characterized by enhanced inhibition of cell proliferation
compared with cells treated with drug only, but the cytotoxic
effects were mostly additive (Figure 2A1 and B1).

The major molecular targets of the drugs investigated in
this study are shown in Table I. Most of them are key
enzymes in the regulation of cell signaling. It takes time for
detection of the effects on cell proliferation as a result of
down-regulation or up-regulation of these enzymes – i.e. at
least one complete cell cycle. Since the doubling time of
Jurkat cells is 25-35 h, the data obtained at the 24th h are not
indicative enough of the real effect of the drugs and their
combinations with 2-DDG on cell proliferation. The data
obtained at the 48th h are more representative.

Very well-expressed synergistic cytotoxic effects were
observed after 48-h treatment of Jurkat cells with 2-DDG in
combination with: palbociclib, everolimus, lonafarnib,
bortezomib, and barasertib (Figure 2 A2 and B2). This
synergism significantly increased after 72-h incubation (data
are not shown).
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The next step of this study was to clarify whether the
cytotoxicity of the combinations was accompanied by
enhancement of ROS in cell suspensions and induction of
apoptosis. Three combinations were selected: one including
conventional anticancer drug (doxorubicin), and two others
including new-generation drugs, barasertib and everolimus. Cells
were treated with the selected drugs and their combinations, and
four parameters were investigated simultaneously: (i) cell
viability; (ii) expression of PSer on the cell surface as a marker
for induction of apoptosis; (iii) level of ROS, detected by cell-
penetrating and ROS-sensitive fluorescent marker; (iv) level of
protein-carbonyl products as end-products of oxidative stress.

Figure 3 shows that the combination of doxorubicin and
2-DDG was characterized by slightly synergistic cytotoxic
effect after 24-h incubation, and antagonistic cytotoxic effect
after 48 h, compared to administration of doxorubicin and 2-
DDG alone. This was accompanied by antagonistic effects
on the level of ROS and protein-carbonyl products, as well as
on the induction of apoptosis in the cells. 2-DDG reduced
doxorubicin-mediated cytotoxicity by reducing the level of
ROS and suppressing apoptosis.

It is widely accepted that the anticancer effect of
doxorubicin is mediated by abnormal production of ROS,
which also causes toxic side-effects on non-cancer cells and
tissues (35-37). The data in the literature describe different
(even opposite) effects of 2-DDG with regard to the
cytotoxicity and anticancer activity of doxorubicin (21, 38-
40). For example, Thakkar et al. found that 2-DDG reduced
the incidence of doxorubicin-induced apoptosis in vivo (in
mouse small intestine) (38). Ahmad et al. observed that 2-
DDG sensitized rapidly dividing T47D breast cancer cells to
doxorubicin, but did not sensitize slowly-growing MCF-7
breast cancer cells (39). In T47D cells, synergistic
cytotoxicity was detected within 24-h treatment with
doxorubicin and 2-DDG, which was accompanied by a
decrease of total intracellular glutathione and disruption of
cellular redox status (39).

Simons et al. reported a sensitizing effect of human head
and neck cancer cells to cisplatin (also a conventional
anticancer drug) using 2-DDG (40). However, the
concentration of 2-DDG used in that study was rather high
(20 mM) and a very strong cytotoxic effect was found even
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Figure 1. Effect of each combination (drug + redox modulator) on cell proliferation, expressed as a percentage of the effect of the respective drug
applied alone (considered as 100% proliferative activity). The grey line shows the effect of redox modulator 2-deoxy-D-glucose (2-DDG) (alone) on
cell proliferation, expressed as a percentage of the control (untreated cells). 
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Figure 2. A: Effect of 2-deoxy-D-glucose (2-DDG) and anticancer drugs on cell proliferation activity of Jurkat cells after incubation for 24 h (A1) and 48
h (A2). Incubation conditions: 1×106 cells/ml, 2-DDG with/without drug (in concentrations described in the Materials and Methods), at 37˚C in a humidified
atmosphere. Data are the mean±SD from six independent experiments. B: Effect of each combination (drug + 2-DDG) on cell proliferation as a percentage
of the effect of chemotherapeutic applied alone after incubation for 24 h (B1) and 48 h (B2). The grey line indicates the effect of 2-DDG on cell proliferation
of cancer cells as a percentage of the control (untreated cells). *In this experiment, the concentration of barasertib was 50 nM.

Table I. Major molecular targets of the investigated drugs.

Drug Molecular targets

Doxorubicin Anthracycline anticancer antibiotic, interacting with DNA; topoisomerase II inhibitor
Bleomycin Glycopeptide anticancer antibiotic, breakage of DNA
Cisplatin Platinum-containing anticancer drug, causing cross-linking of DNA
Lomustin Alkylating anticancer drug (nitrosourea), interacting with DNA
AZD-7762 Selective inhibitor of checkpoint kinases (CHK1, CHK2)
MLN-2238 Proteasome inhibitor
MG-132 Proteasome inhibitor
BEZ-235 Phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor
Bortezomib Proteasome inhibitor
Barasertib Selective inhibitor of aurora B kinase
ABT-737 Selective inhibitor of B cell lymphoma 2 (BCL2) proteins
Palbociclib Selective inhibitor of cyclin-dependent kinases (CDK4, CDK6)
PI-103 Selective (ATP-competitive) PI3K/mTOR inhibitor
Everolimus mTOR inhibitor
Lonafarnib Farnesyltransferase inhibitor



in the absence of cisplatin. In this case, it is difficult to
estimate whether the effect of the combination of cisplatin
and 2-DDG is additive, synergistic or antagonistic.

Wartenberg et al. showed that the inhibition of glycolysis
by 2-DDG for 24 h in DU-145 and Gli36 tumor spheroids is
accompanied by ROS generation (41). 2-DDG suppressed
the delivery of doxorubicin into the spheroids and reduced
the cytotoxic effect of the drug.

Recently, Wang et al. reported that the treatment of
papillary thyroid carcinoma cell lines (PTCC) by
doxorubicin with 2-DDG for 48 h resulted in higher
cytotoxicity compared to cells treated by doxorubicin alone
(42). The concentrations of doxorubicin and 2-DDG used
were similar to those in our study. However, their conclusion
is somewhat confusing depending on the published data.
They claim that the half-maximal inhibitory concentration
(IC50) for doxorubicin in combination with 2-DDG was
significantly lower than that for doxorubicin alone, but the
cytotoxicity of 2-DDG applied alone was also very high
(~50% at 250 μM 2-DDG). Thus, the final cytotoxic effect
of the combination on PTCC was antagonistic. Their data

from the apoptosis assay show that the induction of apoptosis
in doxorubicin-treated cells was in fact higher than in cells
treated with the combination of doxorubicin and 2-DDG.

Aghaee et al. analyzed data from several studies and
indicated that the combined treatment of cancer cells with
doxorubicin and 2-DDG for 24 h results in a synergistic
cytotoxic effect (43).

We also observed such paradox – on 24-h incubation there
was a synergistic cytotoxic effect of doxorubicin and 2-DDG
on Jurkat cells, but on 48-h incubation, the effect was
antagonistic (Figure 2B1 and B2). Obviously, the
cytotoxicity of the combination depends on the incubation
time and has to be considered as a dynamic process. Our
data also demonstrate that 2-DDG reduces doxorubicin-
mediated generation of ROS and induction of apoptosis after
48-hour incubation, which results in diminishing of the
cytotoxicity of doxorubicin towards Jurkat cells (Figure 3).

In the case of combination of everolimus and 2-DDG, we
observed a very clear synergistic cytotoxic effect after 48-h
treatment compared to administration of everolimus and of
2-DDG alone. This was accompanied by a very strong
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Figure 4. Effects of everolimus (Ever; 5 μM) in the absence and
presence of 2-deoxy-D-glucose (2-DDG; 250 μM) on cell viability,
induction of apoptosis, level of reactive oxygen species (ROS) and level
of protein-carbonyl products in Jurkat cells after 24 and 48 h incubation
at 37˚C in a humidified atmosphere. Data are the mean±SD from three
independent experiments.

Figure 3. Effects of doxorubicin (Doxo; 0.1 μM) in the absence and
presence of 2-deoxy-D-glucose (2-DDG; 250 μM) on cell viability,
induction of apoptosis, level of reactive oxygen species (ROS) and level
of protein-carbonyl products in Jurkat cells after 24 and 48 h incubation
at 37˚C in a humidified atmosphere. Data are the mean±SD from three
independent experiments.



decrease of ROS, but a very strong increase of apoptosis of
the cells (Figure 4). Changes in the level of protein-carbonyl
products were not detected – they were at the level of the
control in all samples. In the literature, there are no data on
the cytotoxicity of everolimus in combination with 2-DDG,
nor of the effect of this combination on the cross-talk
between ROS and induction of apoptosis in the cells.

Everolimus is an inhibitor of mammalian target of
rapamycin (mTOR) pathway that plays a fundamental role in
regulation of cell viability, translational initiation, and cell-
cycle progression. This drug is usually used in the clinic as
an immunosuppressant to prevent rejection of organ
transplants. In the past 10 years, it was found that everolimus
also possesses anticancer activity (44-49). It sensitizes cancer
cells to other anticancer drugs, as well as preventing the
development of multidrug resistance through altering the
balance between apoptotic and antiapoptotic factors (50-55).
Several studies have shown that the anticancer effect of
everolimus was not mediated by increased production of
ROS (56, 57). For example, Pignochino et al. reported that
everolimus reduced ROS production, but increased apoptosis

in osteosarcoma cell lines after 48-h treatment (57).
Klawitter et al. observed that everolimus enhanced ROS
formation in C6 glioma cells, but had only minor effects on
normal rat brain tissues (58). In some cells, everolimus
increased, but in others it did not alter or even reduced ROS
production induced by other drugs (e.g. sorafenib and
cyclosporin) (57, 58). In these studies, the ROS analysis was
carried out using DCF probes – specific predominantly for
hydrogen peroxide or other hydroperoxides. 

Recently, Pignochino et al. reported that everolimus
potentiates the anticancer activity and induction of apoptosis
of sorafenib in malignant pleural mesothelioma cells by a
ROS-mediated mechanism (59). In this case, the ROS
analysis was carried out using MitoSOX™ – a fluorescent
probe specific for mitochondrial superoxide.

In our study, we found that the combination of everolimus
and 2-DDG was characterized by a very low level of ROS
(below that of the control; as analyzed by DCF probe), but
by a very strong induction of apoptosis and cytotoxicity
compared to the drug and redox-modulator applied alone
(Figure 4). This could be explained with a synergistic
inhibition of glycolysis by the combination in addition to the
mTOR-dependent regulation of apoptosis by everolimus.
Klawitter et al. showed that everolimus inhibited cytosolic
glycolysis but did not cause changes in mitochondrial energy
production (58). The described experimental data show that
everolimus would be a very promising anticancer agent in
combination with redox modulators.

Barasertib belongs to a new class of pyrazoloquinazolines,
selective inhibitors of aurora B kinase, discovered and
described in 2007 (60, 61). The aurora kinases have been the
subject of considerable interest as targets for the
development of new anticancer agents. The inhibition of
aurora B kinase gives rise to the more pronounced
antiproliferative phenotype and the most clinically advanced
agents reported to date that typically inhibit both aurora A
and B kinases. Little is known on the molecular mechanisms
of action of barasertib, except that it inhibits aurora B kinase,
provokes cell-cycle arrest and apoptosis, as well as
enhancing the response to chemotherapy (62-64).

In our study, we used barasertib at a very low concentration
– 10 nM only. At this concentration, the drug practically did
not influence cell viability, ROS or the protein-carbonyl level,
nor did it induce apoptosis (Figure 5). However, in combination
with 2-DDG, a very strong synergistic cytotoxic effect was
detected, accompanied by a strong induction of apoptosis,
without increase of ROS level, but with an enhancement of the
protein-carbonyl products in the treated cells.

In conclusion, the present study shows that combining
new-generation anticancer drugs, such as barasertib and
everolimus, with a redox-modulator such as 2-DDG
markedly enhances the anticancer effect at a very low
concentration of the drug, and potentially strongly
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Figure 5. Effects of barasertib (Bara; 0.01 μM) in the absence and
presence of 2-deoxy-D-glucose (2-DDG; 250 μM) on cell viability,
induction of apoptosis, level of reactive oxygen species (ROS) and level
of protein-carbonyl products in Jurkat cells after 24 and 48 h incubation
at 37˚C in a humidified atmosphere. Data are the mean±SD from three
independent experiments.



minimizing the side-effects. In some cases, using a redox-
modulator, it is possible to influence the cellular redox
status in such a way as to reduce the production of ROS,
but induce apoptosis of cancer cells by ROS-independent
mechanism(s).
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