Effect of Hyperbaric Oxygenation and Gemcitabine on Apoptosis of Pancreatic Ductal Tumor Cells In Vitro

GERARDO BOSCO1, LUCA GUZZON1, ZHONGJIN YANG2, ENRICO CAMPoresi3, ANDREA CASAROTTO4, CLAUDIO BOSIO4, DEVANAND MANGAR3, CHUNG CHEN3, MARTA CANNATO1, LUANA TONIOLO3, GIACOMO GARETTO6, EMANUELE NASOLE3 and CLAUDIO BASSI4

1Physiology Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy;
2Department of Anesthesiology, Upstate Medical University, Syracuse, NY, U.S.A.;
3Anesthesiology, Tampa General Hospital, Tampa, FL, U.S.A.;
4Laboratory of Translational Surgery. University Laboratory for Medical Research-Verona University of Verona, Verona, Italy;
5Department of Finance, Whitman School of Management, Syracuse University, Syracuse, NY, U.S.A.;
6ATIP Hyperbaric Medical Center, Padova, Italy

Abstract. Background: Gemcitabine is first-line therapy for advanced pancreatic ductal adenocarcinoma (PDAC) with a poor survival and response rate. Hyperbaric oxygenation (HBO) enhances delivery of oxygen to hypoxic tumor cells and increases their susceptibility to cytotoxic effects of chemotherapy. We hypothesized that the anticancer activity of gemcitabine (GEM) may be enhanced if tumor cells are placed in an oxygen-rich environment. The present study evaluated the effects of gemcitabine, HBO and their combination on apoptosis of tumor cells. Materials and Methods: PANC-1 and AsPc-1 PDAC tumor cell lines were used. Cultured tumor cells were treated with GEM at its growth-inhibitory concentration (IC50) and HBO at 2.5 ATA for 90 min or a combination of both (HBO then GEM and GEM then HBO). Twenty-four hours later, apoptotic cells in each group were analyzed and the apoptotic index (AI) was calculated. Results: PANC-1 cell line: HBO alone had no effect on AI: 6.5±0.1 vs. 5.9±0.1. HBO before and after gemcitabine did not further increase AI: 8.2±0.1 (HBO-GEM), 8.4±0.1 (GEM-HBO) vs. 8.0±0.1 (GEM). The combination of HBO and gemcitabine significantly increased AI: 9.7±0.1 (p<0.001 vs. all groups). Conclusion: HBO-alone, whether administered before and after gemcitabine has no effect on apoptosis of PDAC cells in vitro. HBO significantly enhanced gemcitabine-induced apoptosis when administered during gemcitabine. Our findings suggest that the time window would be critical for using HBO as adjuvant to chemotherapy.

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies and the fourth leading cause of cancer-related death in the United States (1). Systemic chemotherapy, radiotherapy or a combination of both have been utilized following surgery in order to improve outcome. However, there has been no significant improvement in the median survival time (less than six months) and 5-year survival rate (3%-5%) despite clinical and research efforts (2). Although adjuvant and neoadjuvant therapy has been widely used in recent years, the best choice for treatment modality remains highly controversial (3).

The searching for new adjuvant treatments targets characteristic properties of the cells. Hypoxia is a common feature of solid tumors. They usually grow so rapidly to exceed their blood supply, leaving portions of the tumor with regions where oxygen availability is considerably limited. Tumor hypoxia is also due to a high degree of cell proliferation which causes higher cell density and thus depletes local oxygen. Hypoxic tumor cells are usually

Correspondence to: Zhongjin Yang, MD, Department of Anesthesiology, SUNY Upstate Medical University, Syracuse, NY, 13210, U.S.A. Tel: +1 3154644890, Fax: +1 3154649930, e-mail: yangz@upstate.edu

Key Words: Pancreatic ductal adenocarcinoma, gemcitabine, hyperbaric oxygen therapy, apoptotic index, PANC-1, AsPc-1 cells.

0250-7005/2013 $2.00+.40 4827
resistant to radiotherapy and chemotherapy because oxygen is essential for the cytotoxic activity of these therapies. Nevertheless, hypoxic tumors can be made more susceptible to treatment by increasing the amount of oxygen inside (4).

Hyperbaric oxygen therapy (HBO) is one of the modalities to temporarily alleviate or eliminate hypoxic status in growing tumor cells. By providing 100% oxygen at elevated atmospheric pressure, HBO increases the partial pressure of the oxygen gas and thus forces more oxygen to be dissolved in the plasma, which allows the extra oxygen to be diffused or transported to the body tissues. HBO has been documented by The Undersea and Hyperbaric Medicine Society to be beneficial in 13 different diseases (5). The effects of HBO used as adjuvant to radiotherapy or chemotherapy has been reviewed (6). In vitro studies have demonstrated the beneficial effects of HBO used adjuvant to chemotherapy in the treatment of osteosarcoma, nasopharyngeal carcinoma CNE-2Z cells, and murine model of PC-3 prostate cancer cell line and glioma U251 cell lines (7-10). The use of HBO as adjuvant therapy for pancreatic tumors has not been reported. Gemcitabine is a pyrimidine anti-metabolite that with good clinical activity in pancreatic, breast, ovarian, non-small-cell lung, and bladder tumors (11). Gemcitabine is a first-line therapy for locally advanced pancreatic cancer; however, severe resistance is responsible for a response rate less than 20% and median survival less than six months of (2). Although efforts to overcome gemcitabine resistance have been made, the only combination treatment that has shown a small but statistically significant effect was gemcitabine with erlotinib, an epidermal growth factor receptor inhibitor (12). We hypothesized that a combination of HBO and gemcitabine may significantly enhance the efficacy of gemcitabine for pancreatic tumors. PANC1 is an epithelioid carcinoma cell line derived from human pancreas and AsPc-1 is a human pancreatic adenocarcinoma cell line (13, 14). Both cell lines are relatively sensitive to gemcitabine in vitro (15). These two cell lines were used in the present study to investigate for the efficacy of gemcitabine-alone, HBO-alone and the combination of both on the apoptotic index (AI) in these two cell lines.

Materials and Methods

Cell cultures. PANC-1 cell line and AsPc-1 cell line were used in the present study. Tumor cells were derived from pancreatectomy samples from patients with infiltrating ductal and intra-ductal carcinoma. Cells from these two lines were cultured in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich, Laborchemikalien, Seelze, Germany) with 10% fetal calf serum and a mixture of 100 IU/ml penicillin and 100 μg/ml streptomycin (all from GIBCO, Grand Island, NY, USA).

Hyperbaric chamber. A hyperbaric chamber, model Costruzioni Riunite Moro; Quinto di Treviso, Italy, located in Padova’s ATIP center was used for HBO therapy. The tumor cells were treated at 2.5 atmosphere absolute (ATA) and 100% oxygen for 90 min, with five minutes for compression and five minutes for decompression.

Chemotherapy. Gemcitabine (Sigma-Aldrich Laborchemikalien) was dissolved in Phosphate buffered saline (PBS) and used its 50% growth-inhibitory concentration (IC50) for cultured tumor cells. Its IC50 value for PANC-1 cell is 3.25×10^-8 ng/ml and for AsPc-1 cell is 1.27×10^-7 ng/ml (16).

Sample analysis. Apoptosis was measured quantitatively with the use of the TUNEL assay. The ApoTag In situ Apoptosis Detection kit (Chemicon, Temecula, CA, USA) was used according to the manufacturer’s instructions. A cell was considered TUNEL-positive if it was stained brown (from light to dark) and if it exhibited apoptotic bodies, chromatin condensation and membrane blebbing. The total number of TUNEL-positive tumor cells were counted in five different high-power fields with a microscope (Nikon Eclipse 80i, magnification x20, NIKON INSTRUMENTS INC, Melville, NY, USA) and the average was calculated.

The total number of cells (both TUNEL-negative and -positive) was also counted and the apoptosis index was calculated.

Treatment. Tumor cells from the PANC-1 cell line and the AsPc-1 cell lines were prepared by seeding them in 35 mm Petri dishes at a density of 4000 cells/cm² 72 h before the beginning of the treatment. The tumor cells were divided into the following treatment groups.

GEM. The tumor cells were treated with gemcitabine alone at the IC50 value. After 24 h, the culture media were replaced. The culture media were replaced again after 24 h and after a further 48 hours, the apoptotic index was analyzed with a TUNEL test.

HBO. The tumor cells were treated with a quantity of PBS (as placebo) equal to that used for dissolving gemcitabine for administering to the experimental samples. After 24 h, the culture media were replaced and the tumor cells were treated with HBO alone for 90 min at 2.5 ATA. The culture media were replaced again after 24 h and after a further 48 h, the apoptotic index was analyzed with a TUNEL test.

Control. The tumor cells were treated with PBS (as placebo) equal in quantity to that used to dissolve gemcitabine for administering to the experimental samples. After 24 h, the culture media were replaced. The culture media were replaced again after 24 h and after another 48 h the AI was analyzed with a TUNEL test.

GEM-HBO. Gemcitabine, at the IC50 value for the tumor cells was administered the tumor cells cultured for 24 h. The drug was then eliminated by replacing the culture media. The tumor cells were then treated with HBO at 2.5 ATA for 90 min. The culture media were replaced 24 h later. The apoptotic index was analyzed with a TUNEL test after 48 h. The AI was calculated as: AI=total number of apoptotic cells counted/ total number of live cells counted.

HBO-GEM. The tumor cells were first treated with HBO at 2.5 ATA for 90 min. After 24 h, the culture media were replaced and the tumor cells were treated with gemcitabine at the IC50 value. After 24 h, the culture media were replaced again and after another 48 h, the AI was analyzed with a TUNEL test.

GEM+HBO. Gemcitabine at the IC50 value for the tumor cells was administered and HBO was administered for 90 min at 2.5 ATA at the same time. After 24 h, the culture media were replaced and after a further 48 h, the apoptotic index was analyzed with a TUNEL test.
Each treatment was repeated three times and for each sample, the cells in 23 randomly selected fields of 0.157 mm2 within a 5 cm2 area were counted for apoptotic and living cells. During the measuring of apoptotic cells, the number of all tumor cells in each group was counted to determine the tumor cell growth under different treatments.

Statistical analysis. Results are presented as the mean±SD. Multiple comparisons among groups were analyzed by one-way analysis of variance followed by the Tukey–Kramer method for post-hoc analysis after confirmation of normal distribution of the data. Tukey 95% simultaneous confidence intervals were applied, or p-value <0.05, when equality assumptions were rejected simultaneously. The individual confidence level was 99.54%, or with p-value <0.0046.

Results

The apoptotic indices are summarized in Table I. HBO per se had no significant effect on the induction of apoptosis in either cell line. HBO when administered before or after gemcitabine administration also had no significant effect on gemcitabine-induced apoptosis in either tumor cell line. HBO enhanced gemcitabine-induced apoptosis in both tumor cell lines only when administered concurrently with gemcitabine.

There was no significant change in the total number of tumor cells with therapy using HBO-alone or the control group (data not shown).

Discussion

The main findings of the present study are that: i) HBO-alone had no significant effect on inducing tumor cell apoptosis; ii) gemcitabine-alone significantly increased apoptosis of tumor cells; iii) administration of HBO before or after gemcitabine treatment did not further increase apoptosis; and iii) administration of HBO concurrently with gemcitabine treatment significantly enhanced gemcitabine-induced apoptosis of the tumor cells. The AI was used to evaluate antitumor activity of Cox inhibitor in a canine model of human invasive urinary bladder cancer (21). The AI was used in the present study to evaluate the efficacy of HBO, gemcitabine and their combination in the induction of apoptosis of pancreatic tumor cells.

Solid tumors survive and proliferate in a hypoxic environment. These slowly-proliferating hypoxic tumor cells are less susceptible to chemotherapy and radiotherapy because molecular oxygen and reactive oxygen species (ROS) are essential for such therapies (6). Therapeutic efficacy may be improved if the hypoxic state of the tumor cells is eliminated. HBO is one of the modalities to significantly increase oxygen availability around tumor cells and thus has been evaluated as adjuvant to radiotherapy and chemotherapy (6). It has been a concern that HBO induces re-oxygenation of hypoxic tumor cells and an increase of angiogenesis may potentially promote tumor cell growth and recurrence of malignancy (6). Comprehensive investigations are mandatory before HBO can be safely used in clinical cancer therapy.

Tang et al. investigated the effect of HBO on tumor growth in an in vivo murine model of indolent prostate cancer (9). Mice with induced tumors were randomized to undergo 20 sessions of either therapy with HBO or air, under standardized conditions and were observed for 4 weeks before histological assessments of any palpable tumors that had developed. It was found that exposure to HBO had no effect on prostate cancer volume, tumor microvesSEL density, proliferative index, and apoptosis markers in comparison to the non-HBO group. Their study showed that HBO had no tumor-stimulatory effect on prostate cancer. They suggested that HBO may potentially be used safely in conjunction with other therapeutic modalities (9). Lu et al. also reported that

Table I. Effect of hyperbaric oxygen (HBO) treatment and gemcitabine (GEM) on apoptosis of PANC-1 and AsPC-1 pancreatic ductal adenocarcinoma cells. Apoptotic indices are presented as mean±SD. HBO per se had no significant effect on apoptosis of tumor cells. Gemcitabine significantly induced apoptosis of tumor cells. HBO significantly enhanced gemcitabine-induced apoptosis only when administered during chemotherapy. Multiple comparisons among groups were analyzed as described in Materials and Methods. (The number of tumor cells for each group were 4×103 cells/cm2 in Petri dish).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cell lines</th>
<th>Control</th>
<th>HBO</th>
<th>GEM</th>
<th>HBO-GEM</th>
<th>GEM-HBO</th>
<th>HBO+GEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANC-1</td>
<td>5.9±0.1</td>
<td>6.5±0.1</td>
<td>8.1±0.1* #</td>
<td>8.2±0.1$^* #$</td>
<td>8.5±0.1$^* #$</td>
<td>10.7±0.1$^{* ** # !}$</td>
<td></td>
</tr>
<tr>
<td>AsPC-1</td>
<td>5.9±0.1</td>
<td>5.9±0.1</td>
<td>8.0±0.1$^* #$</td>
<td>8.2±0.1$^* #$</td>
<td>8.4±0.1$^* #$</td>
<td>9.7±0.1$^{* # !}$</td>
<td></td>
</tr>
</tbody>
</table>

Control: Without treatment; HBO: treated with HBO alone for 90 min at 2.5 ATA; GEM: treated with GEM alone; HBO-GEM: treated with HBO at 2.5 ATA for 90 min then after 24 h treated with GEM; GEM-HBO: treated with GEM for 24 h then placed in drug-free culture media and treated with HBO; GEM+HBOT: HBO was administered for 90 min at 2.5 ATA during therapy with GEM.$^{*}p<0.01$ vs. control; $^{\#}p<0.01$ vs. HBO; $^{**}p<0.01$ vs. GEM, HBO-GEM and GEM-HBOT.
HBO inhibited proliferation in glioma U251 cells \textit{in vitro} (10). The natural doubling time for the tumor cells used in the present study was approximately 52 h. The proliferation of tumor cells was not examined in the present study because treatment caused changes that may not be detectable 24 h after treatment (9). Nevertheless, we did record tumor cell numbers in the group treated with HBO-alone and control group and found there was no significant difference in the cell numbers in both groups, therefore ruling out a possible stimulating effect of HBO on growth. As mentioned by Schonmeyr \textit{et al.}, conflicting results on the effects of HBO on tumors have been presented (22). Thus, some studies have shown suppressed tumor growth and reduced metastatic rates after HBO (23, 24); others have demonstrated enhanced tumor progression or no effects at all (25, 26). Schonmeyr \textit{et al.} data showed that HBO does not accelerate squamous cell proliferation or promote tumor growth. Furthermore, their data showed that although HBO may decrease hypoxia within the tumors, there is no evidence of HBO altering angiogenesis or vascular invasion in squamous cancer cell tumor deposits (22). Our study is in agreement with the above findings that HBO has no tumor-stimulating effect in the pancreatic tumor cell lines studied.

Lu \textit{et al.} reported that HBO-alone inhibited cell proliferation and induced apoptosis of glioma U251 cells \textit{in vitro} (10). In our study, HBO-alone had no significant effect on the AI for pancreatic tumor cells. It is known that HBO increases the free oxygen radical level, which may cause tumor cell damage. In their study, HBO was given three times at 12 h intervals. Multiple HBO sessions may exceed the tumor cells’ endogenous cellular antioxidant capacity, thus creating oxidative stress leading to cell damage. Consistent with the evidence that most chemotherapeutic drugs cause tumor cell death primarily by inducing apoptosis, resistance to anticancer treatment is widely believed to involve mutations that lead to de-regulated cellular proliferation and suppression of mechanisms that control apoptosis. It has been observed that tumors with exhibiting AI after one cycle of chemotherapy are more likely to achieve pathological regression. Increased apoptosis after chemotherapy may also be responsible for the enhancement of gemcitabine chemotherapy. HBO has been reported to directly increase the uptake of 5-fluorouracil in dimethyl-α-benzantracene-induced mammary tumors \textit{in vivo} (33). It is known that some chemotherapeutic drugs require oxygen to
generate free oxygen radicals that in turn induce cytotoxicity. HBO may disturb the membrane components of cells following oxidation phenomena caused by ROS overproduction. A change in the properties of any one membrane components is anticipated to change the conductance of membrane-spanning ion channels and thus cell function. HBO therefore may facilitate drug access to the cell, if the drug is already close to the cell. HBO may also slow down the elimination of the drug due to inhibition of protein response, increase membrane thickness, or oxidation of the amino acids of transport proteins, in particular of multidrug resistance proteins, thanks to increasing intracellular ROS (10, 34). Multidrug resistance arises primarily due to the up-regulation of proteins from the adenosine triphosphate binding cassette transporter family. Sensitivity to chemotherapy is strongly dependent on the expression of multidrug-resistance related transporters (35). HBO has been observed to inhibit multi drug-resistance-related transporters therefore enhancing anticancer activity of chemotherapy (9). Finally, TNF-α is implicated in the processes of tumor growth, survival, differentiation, invasion, metastasis, secretion of cytokines and pro-angiogenic factors. HBO has been reported to inhibit TNF-α production in ischemia reperfusion tissue injury (36, 37). HBO was also reported to reduce interleukin-1 production of macrophage (38). Since interleukin-1, in particular, is able to stimulate metastasis and growth of the cell lines we used here, HBO might enhance apoptosis by inhibiting its production (39).

In summary, HBO-alone was found to have no effects on apoptosis of pancreatic tumor cells in vitro. HBO did not enhance gemcitabine-induced apoptosis of pancreatic tumor cells when administered before or after chemotherapy. HBO significantly enhanced gemcitabine-induced apoptosis of pancreatic tumor cells when administered concomitantly with chemotherapy. Our study suggests that the time window of therapy is critical for effectively using HBO as adjuvant to chemotherapy.

Acknowledgements

The Authors are grateful to the ATIP Hyperbaric Medical Center (Padova) for generous loan of the research hyperbaric chamber and Mr. Giorgio Lupi for his assistance with the chamber operation. The Authors also acknowledge Professor Donald Schirachi for his input during the preparation of the manuscript. We also wish to thank Ms. Susan Anderson for her English editorial assistance.

References

Received August 5, 2013
Revised September 27, 2013
Accepted September 30, 2013