
Abstract. The immune system prevents establishment and
progression of cancer through innate and adaptive
surveillance. However, some cancerous cells successfully
evade the immune system. Regulatory T-cells (Tregs)
facilitate such evasion. Tregs may be the factor responsible
for the limited success of human tumor immunotherapy to
date. To improve immunotherapy, it is thought that the
number of Tregs and their functions should be inhibited in
patients with advanced cancer. In this review, we focus on
recent immunotherapy efforts targeting Tregs.

Certain T-cells react to self-antigen. Consequently, the
immune system consists of various regulatory systems that
suppress induction of autoreactive cytotoxic T-lymphocytes
(CTLs). One such regulatory system is composed of
regulatory T-cells (Tregs). Tregs play an essential role in
maintaining immunological unresponsiveness to self-
antigens. Since many cancer antigens are self-antigens, Tregs
are thought to suppress antitumor immunity (e.g. CTLs) and
promote tumor progression. In this review we provide a brief
summary of the importance of Tregs in cancer and focus on
therapy targeting Tregs. 

Fundamental Role for Tregs

Tregs represent a unique CD4+ T-cell subpopulation that
suppresses the activation and proliferation of autoreactive
lymphocytes and induces self-tolerance. There are two kinds
of self-tolerance, central tolerance and peripheral tolerance.

The former contributes to lymphocyte differentiation through
the elimination and inactivation of autoreactive lymphocytes
in primary lymph organs. The latter contributes to immune
tolerance to self-antigen in mature lymphocytes circulating
in peripheral blood. Tregs are believed to contribute to the
induction and maintenance of peripheral tolerance.
Generally, Tregs are recognized as naturally occurring Tregs
(nTregs), having differentiated from CD4+CD8+ T-cells in
the thymus. nTregs, like all T-cells, arise from progenitor
cells in the bone marrow and undergo lineage commitment
and maturation in the thymus (1). nTregs comprise a small
population, just 5-10% of peripheral CD4+ T-cells (2), but
play a critical role. nTregs migrate from the thymus into the
periphery when just 3 days old, and thymectomy of mice at
day 3 results in lethal autoimmunity due to the lack of
peripheral Tregs (3). Recently, inducible Tregs (iTregs) have
attracted attention regarding tumor immunity. iTregs are
derived from naïve CD4+ T-cells (Tn cells) that have
migrated from the thymus to the periphery, where they
differentiate and induce cytokines such as transforming
growth factor-β (TGF-β). The function of nTregs and iTregs
are quite similar and it is difficult to distinguish nTregs from
iTregs. CD4+CD25+ forkhead box P3 (FOXP3)+ Tregs
include nTregs and iTregs and are thought to be the major
Tregs population. nTregs differentiate in the thymus and
decrease in number with age since the thymus undergoes
rapid atrophy after adolescence. On the other hand, the
decrease of iTregs that is induced in the periphery with age
is slow compared to the one of nTregs. Therefore, conversion
of memory T-cells to iTregs is thought to be required for
Tregs maintenance (4-5). FOXP3– T-cells with suppressive
activity have been described based upon their cytokine
induction profile. Type 1 regulatory T cells (Tr1) are induced
by interleukin-10 (IL-10) (6), and T-helper 3 (Th3) cells, are
induced by TGF-β (7). Natural killer (NK) T-cells have also
been studied for their regulatory properties (8). Although the
majority of NK T-cells express CD4, most of the remaining
cells express neither CD4 nor CD8, although in humans
there is a small subset of CD8+ NK T-cells (9-10). 
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There are other Tregs that are not of the CD4+ lineage. An
in vitro study identified a subset of human CD8+ T-cells
(CD8+CD28–) that was able to confer tolerance by
preventing up-regulation of the co-stimulatory markers CD80
and CD86 on antigen presenting cells (APCs), by CD4+ T-
cells (11). Unlike CD4+ iTregs, CD8+ Tregs are dependent
on interferon-γ (IFN-γ) to secrete TGF-β (12). How CD8+

Tregs are generated is still unknown, however, and multiple
subsets of CD8+ Tregs, both thymus-derived and peripherally
induced, have been described in human and mouse (13). γδ-
T-cells which can be developed extrathymically also seem to
be important Treg elements of the immune system (14-15). It
has been shown that γδ-T cells are capable of enhancing
inflammatory responses in autoimmune disease, such as
systemic lupus erythematosus, rheumatoid arthritis (15, 16),
graft-vs-host disease (17), and delayed-type hypersensitivity
(18). Figure 1 summarizes the differentiation pathways of
Tregs described in this review (19). 

Tregs in Cancer

Tregs comprise 5-10% of CD4+ T-cells in peripheral blood
and are normally found in lymph organs (20-23). The reason
why Tregs are enriched in lymph nodes may be due to the fact
that they express homing receptors, including CC chemokine
receptor1 (CCR1), CCR2, CCR4, CCR5, CCR6, CCR8,
CCR9, CXC chemokine receptor3 (CXCR3), CXCR4,
CXCR5,CXCR6, α4β1 integrin, αEβ7 integrin, α4β7 integrin,
and the P- and E- selectin ligands (24). The study also showed
that dendritic cell (DC) preferentially attract Tregs by secreting
chemokines CCL17 and CCL22, which are ligands for the
CCR4 receptor (24). Tregs numbers in peripheral blood
mononuclear cell (PBMC) from patients with non-small cell
lung cancer or ovarian cancer are higher than the ones
observed in healthy volunteers (25). Similar results have been
noted in breast cancer, colon cancer, esophageal cancer, gastric
cancer, hepatocellular carcinoma, leukemia, lymphoma,
malignant melanoma and pancreatic cancer (26-28). Moreover,
Tregs may increase in malignant ascites (25, 29). There are
three possible reasons why Tregs accumulate in cancer. Firstly,
iTregs are induced or proliferate locally due to cytokines such
as TGF-β, IL-10, and vascular endothelial growth factor
(VEGF), which are reportedly important factors for induction
and promotion of iTregs differentiation. Secondly, immature
DCs exposed to TGF-β, IL-10, and VEGF induce Tregs. Much
current vaccine-based immunotherapy for cancer is dependent
on DC function, hence the need for modulating Tregs to
maximize the effect of such vaccines (30). Thirdly, Tregs
proliferate through signaling of T-cell receptor (TCR), CD28,
and IL-2. Thus, Tregs may promote self-tolerance to impede
immune surveillance against cancer in healthy individuals and
suppress potential responsiveness to autologous tumors in
cancer patients (31). 

Many investigators define T-cells that express FOXP3+ as
Tregs, and suggest a negative correlation between prognosis
and the number of tumor-infiltrated Tregs (32-36). On the
other hand, several recent studies present conflicting
prognostic data for some hematological malignancies,
especially B-cell lymphoma in which an elevated number of
FOXP3+ cells were shown to correlate with improved survival
(37). The assertion that there is a correlation between Tregs
and prognosis is still controversial. Importantly, a reduced
ratio of CD8+ T-cells to CD4+CD25+FOXP3+ in Tregs, as
well as Tregs numbers in tumors, correlates with poor
prognosis in patients with breast (35), gastric (38), ovarian
(32, 35, 38-39), and colon cancer (40). 

Immunotherapy Targeting Tregs

This review focuses on therapy directed at Tregs aiming to
reduce and eliminate them. Figure 2 summarizes potential
approaches for the elimination and inhibition of Tregs, as
described below. 

Anti-CD25 therapy. Basiliximab which is an anti-CD25
monoclonal antibody is the arsenal of current immunotherapies
being used in kidney transplant patients (41). Bluestone et al
showed that basiliximab caused a transient loss of FOXP3+ and
FOXP3–CD25+ T-cells in the circulation (41). Denileukin
diftitox (Ontak) is a recombinant fusion protein product of
diphtheria toxin and IL-2 that selectively binds to the IL-2
receptor of cells and, following internalization, inhibits protein
synthesis (42). Rasku et al showed that Ontak caused a
transient depletion of Tregs (43). Telang et al showed the
promising result of Ontak in patients with unresectable stage
IV melanoma in phase II trial (44).

Immunotoxin LMB-2 is another agent used for relative
selective destruction of Tregs. LMB-2 consists of a single-
chain Fv fragment of anti-CD25 monoclonal antibody fused
to a truncated form of the bacterial Pseudomonas exotoxin
A, from which two amino acids have been deleted (45).
Major trials testing this immunotoxin in patients with CD25+

hematological malignancies (46) and refractory hairy cell
leukemia (47) have shown promising results. 

However, one of the problems is that CD25 can be
expresed in activated effector T-cells, thus anti-CD25 therapy
may also affect activated T-cells. 

Monoclonal antibodies against Cytotoxic T-Lymphocyte
Antigen 4 (CTLA-4). CTLA-4 is expressed on Tregs and is
thought to play a pivotal role in their suppressive function.
Ipilimumab, a monoclonal antibody against CTLA-4, was
evaluated extensively as a possible therapeutic agent for the
treatment of several kinds of melanoma (48). A phase III study
of ipilimumab was published, and significant improvement in
overall survival and drug tolerance among patients with
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metastatic melanoma was observed (49). The US Food and
Drug Administration approved ipilimumab injection for
unresectable or metastatic melanoma on March 25, 2011.
Another monoclonal antibody against CTLA-4, tremelimumab,
a fully human IgG2 antibody developed by Pfizer
Pharmaceuticals, is undergoing clinical investigation (48). 

Antibody against glucocorticoid-induced tumor necrosis
factor (TNF)-receptor. Glucocorticoid-induced TNF-receptor
(GITR) contributes to the immunosuppressive function of
Tregs. Interestingly, anti-GITR antibody may ameliorate the
suppressive function of Tregs in vivo and in vitro (50).
Preclinical evidence has demonstrated that signaling through
GITR such as anti-GITR antibody, soluble GITR ligand
could modulate the activity of Tregs with loss of FOXP3
expression (51).

FOXP3 vaccination. FOXP3 is a Tregs-specific marker and
may offer the most rational approach to target Tregs. The
concept of Tregs depletion via vaccination is to enhance the

efficiency of previous antitumor vaccinations that have led to
patented products (48). Patent WO 2008/081581 describes the
invention of a vaccine using nonapeptides and decapeptides
derived from FOXP3 that bind HLA molecules (48). 

Toll-like receptor 8 (TLR8). The TLR8-myeloid differentiation
factor 88 (MYD88)- Interleukin-1 receptor associated kinase 4
(IRAK4) signaling pathway can reverse the suppressive
function of different Tregs populations (52). It is not entirely
clear why only TLR8 ligands can reverse the suppressive
function of Tregs. One reason may be that Tregs express a
relatively high level of TLR8 (52). Poly-G oligonucleotides or
similar ligands might be useful in clinical settings to enhance
the efficacy of immunotherapy directed toward cancer. 

Drug-induced Tregs inhibition. Recent effects of drug-
mediated Tregs inhibiton have been reported.
Cyclophosphamide increases antitumor effects by reducing
Treg numbers and function (53). Cyclosporine A and
tacrolimus also reduce the Tregs numbers as a function of
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Figure 1. A schema illustrating how regulatory T-cells (Tregs) differentiate in both the thymus and periphery. Natural killer T-cells; NK T-cells,
forkhead box P3; FOXP3.



IL-2 secretion and inhibition of IL-2 signaling (54, 55).
Tregs are sensitive to paclitaxel (56) and imatinib suppresses
FOXP3, a master gene of Tregs (57). Dasatinib suppresses
inhibition of Tregs proliferation and reduces FOXP3
expression by inducing G0/G1 arrest (58). 

Other possible molecular mechanism that may target Tregs.
p38 mitogen-activated protein kinase (MAPK) pathway: The
p38MAPK pathway in Tregs is activated more so than in
typical CD4+ T- cells. Recent study revealed that depletion
of CD25+ Tregs in combination with treatment with a p38
chemical inhibitor is necessary to completely block the
immunosuppressive function of IL-10-producing anergic
CD25– iTregs (59).

Hypoxia inducible factor-1α (HIF-1α): α): Ben-Shoshan
showed that in vivo expression of HIF-1α induced FOXP3
expression and an increase in the number of functionally
active FOXP3+CD4+CD25+ Tregs (60).

Notch signaling pathway: Notch is a morphogen and
contributes to cancer initiation and progression by regulating
FOXP3 expression via interaction through the FOXP3
promoter (61). Notch signaling, therefore, may be a target for
regulating both cancer progression and antitumor immunity. 

OX40. OX40 (CD134) is a co-stimulatory TNF receptor family
molecule that is constitutively expressed on Tregs (62). OX40
activation inhibits FOXP3 gene expression and limits Tregs
suppression of effector T-cells (63). Furthermore, intratumoral
injection of anti-OX40 monoclonal antibody strongly
suppressed tumor growth (64). This result suggests the OX40
receptor may be a target for antitumor immunotherapy. 

Exosome. Exosomes are endosome-derived organelles of 50-
100 nm that are actively secreted through an exocytosis
pathway by many cell types (65). They are very rigid and
resistant to enzymatic degradation in blood, ascites, and
effusions. (66). These biophysical properties allow exosomes
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Figure 2. A potential approach for eliminating and inhibiting regulatory T-cells (Tregs). Colored squares with solid lines show known approaches or
factors. Empty squares with dotted lines show possible approaches. Toll-like receptor; TLR, Mitogen-activated protein kinase; MAPK, hypoxia inducible
factor; HIF, transforming gowth factor; TGF, vascular endothelial growth factor receptor; VEGFR, Glucocorticoid-induced TNF-receptor; GITR. 



to play an important role in cell to cell communication, in
particular communication between immune cells (67). In
fact, exosomes express many cell–cell communication-
related molecules, including MHC class I and II, CD86,
tetraspanins, and heat-shock proteins (65, 66). Recently,
tumor-derived exosomes were shown to contribute to
maintaining Tregs numbers and suppressive function in
malignant effusions. It appears that surface-bound TGF-β1
on tumor-derived exosomes mediates FOXP3 expression
(68). Thus, elimination of malignant effusion derived
exosome, or control of such exosomes expressing TGF-β1,
may be new immunotherapy therapeutic strategies for
advanced cancer with malignant effusions.

Vascular endothelial growth factor receptor 2 (VEGFR2)
expression on Tregs. We identified VEGFR2 as a potential
marker expressed on the surface of Tregs (69). VEGFR2 is
expressed selectively on CD4+FOXP3high cells and has strong
immunosuppressive functions on allogeneic T-cells. We
reported that anti-VEGF antibody (bevacizumab) inhibited
Tregs expansion, suggesting that VEGF contributed to Treg
induction (70). Taken together, VEGFR2 may be a useful target
since it is expressed on the cell surface of only the FOXP3high

population. Moreover, peptide vaccination using VEGFR2 is
undergoing clinical investigation in a phase I study (71).
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