
Abstract. Mammalian target of rapamycin (mTOR), an
important sensor for growth factors, nutritional deprivation and
other stresses in controling translation, plays a critical role in
tumorigenesis. Several rapalogs exhibited antitumor activity
clinically, with a modest average response rate, while a small
subset of patients exhibited significantly greater clinical
benefits. A better understanding of cellular mechanisms and the
results of clinical studies can help identify an optimal biomarker
to predict the efficacy of mTOR inhibitors. We discuss these
potential markers in terms of selection of candidates, baseline
expression, pathway inhibition and source of targeted protein. 

Mammalian target of rapamycin (mTOR) is a serine/threonine
kinase of PI3K (phosphatidylinositol 3-kinase) family and
integrates the stimuli of nutrients, energy and stress to affect
cell growth and proliferation through the regulation of mRNA
translation (Figure 1) (1, 2). Two structurally and functionally
distinct mTOR-containing complexes, referred to as mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2),
have different sensitivities in mTOR signaling to rapamycin.
mTORC1, consisting of mTOR, mammalian lethal with
Sec13 protein 8 (mLST8), regulatory-associated protein of
mTOR (raptor) and proline-rich protein kinase B (AKT)
substrate 40 (PRAS40), can regulate cell growth. mTORC1
kinase activity is sensitive to rapamycin treatment (2-4).
mTOR, mLST8 and rapamycin-insensitive companion of
mTOR (rictor) form mTORC2, which can affect the actin

cytoskeleton. The autophosphorylation of mTORC2 is
rapamycin-insensitive (5). 

mTORC1 is an important effector that senses the stimuli of
growth factors or insulin via the phosphatidylinositol 3-kinases
(PI3K) pathway. The recruitment of PI3K leads to activation of
AKT through the phosphorylation of phosphoinositide-
dependent protein kinase 1 (PDK1), which can be antagonized
by phosphatase and tensin homolog (PTEN) (2). AKT
phosphorylates PRAS40 and tuberous sclerosis complex 2
(tuberin) to promote mTORC1 expression (6). PRAS40, a
substrate of mTORC1, can inhibit mTORC1 kinase activity by
directly disrupting substrate binding. Once it is phosphorylated,
PRAS40 can in turn relieve its inhibition of mTORC1 and
activate the mTORC1 signaling cascade (7-9). Tuberous
sclerosis protein 2 (TSC2) acts as a GTPase-activating protein
and negatively-regulates the expression of the rat sarcoma viral
oncogene homolog (RAS) homolog enriched in brain (RHEB),
a member of RAS superfamily of GTP-binding proteins. AKT-
dependent phosphorylation of TSC2 can inactivate GTPase (10,
11). Thus, GTP loading of RHEB activates mTORC1, resulting
in the regulation of eukaryotic translation initiation factor 4E-
binding protein 1 (4EBP1) and S6 kinase expression (12).
Additionally, the RAS/mitogen-activated protein kinase
(MAPK) pathway can sense the stimuli of growth factors to
signal mTORC1. The activation of extracellular signal-regulated
kinase (ERK), a RAS-dependent downstream protein, drives the
phosphorylation of TSC2 to prevent inhibition of RHEB. ERK
can mediate the mTORC1 expression either through the
phosphorylation of TSC2 and RHEB or through direct
activation of the raptor (13-16). Moreover, mTOR bridges the
alteration of energy and translation via the liver kinase B1
(LKB1)-5’ adenosine monophosphate-activated protein kinase
(AMPK) pathway. Increasing of the AMP/ATP ratio stimulates
the phosphorylation and activation of LKB1, which in turn can
phosphorylate and activate AMPK. AMPK-dependent
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phosphorylation of TSC2 enhances the inhibition of mTORC1
(17, 18). Genotoxic stress is wired to TSC2-inducing mTORC1
inactivation through p53-modulated phosphorylation of
sestrin1/2 and subsequent activation of AMPK (19). Regulated
in development and DNA damage 1 (REDD1) is a sensor of
hypoxia which controls the phosphorylation of TSC1/TSC2
complex and the subsequent modulation of mTORC1 (20). 

Ribosomal protein S6 kinase 1 (S6K1) and 4EBP1 are
important downstream proteins of mTOR which control the
translation (2). Activated S6K1 promotes the translation of 5’
tract of oligopyrimidine (5’TOP)-containing mRNA that
encodes ribosomal proteins and elongation factors through
phosphorylation of 40S ribosomal protein S6 (21). In
addition, S6K1 affects the phosphorylation of eukaryotic
translation initiation factor 4B (eIF4B) acting as an RNA-
binding protein. Phosphorylated eIF4B enhances ATPase
activity and RNA helicase activities of eIF4A (22). 4EBP1,
an mTOR substrate, binds to eIF4E to act as a repressor.
Phosphorylated 4EBP1 dissociates with translation activator
eIF4E and relieves the repression to eIF4E binding to eIF4G
(23). In turn, the eIF4E/eIF4G complex, referred as eIF4F,
can promote cap-dependent translation and encode proteins
involved in the cell-cycle (24). 

Dysregulation of mTOR/PI3K function has been previously
shown to be responsible for malignant transformation, cell
growth and proliferation (25). Mutations of encoding the
catalytic subunit of PI3K (PI3KCA) are a common oncogenic
alteration in human cancer (26). Acting downstream of the
human epidermal growth factor receptor (HER) family, even
tyrosine kinase inhibitors effectively and continuously suppress
the phosphorylation of EGFR and HER2 with subsequent
inhibition of downstream MAPK and c-Jun N-terminal kinases
(JNK) signaling cascade, but AKT signaling can be re-activated
by the re-phosphorylation and re-activation of HER3 through
heterodimerization and transphosphorylation (27). Loss-of-
function mutation in PTEN is also a trigger inducing oncogenic
activation of the mTORC1 pathway. However, alterations of the
mTOR repressors, TSC1 and TSC2, are uncommon in human
cancer (6). In addition, oncogenic RAS can activate mTORC1
via a PI3K-independent pathway, MAPK cascade (13). The
mutated v-Raf murine sarcoma viral oncogene homolog B1
(BRAF)-dependent activation of ERK can phosphorylate and
inactivate LKB1 and downstream AMPK, with a subsequent
increase in cell proliferation (28). Oncogenic mTORC1 controls
the translation of cyclin D1, V-myc myelocytomatosis viral
oncogene homolog (c-Myc), vascular endothelial growth factor
and hypoxia-inducible factor 1 to regulate cell growth,
angiogenesis and metastasis (29-33). 

Rapamycin and its analogs bind to FK506-binding protein
(FKBP12) and allosterically inhibit mTOR kinase leading to
suppression of activation of mTORC1-targeted 4EBP1 and
S6K1 and translation (34, 35). Prolonged rapamycin treatment
can inhibit the activity of mTORC2 and its downstream AKT

even though mTORC2 is rapamycin-insensitive (36). However,
rapamycin-inactivated S6 kinase can relieve its inhibition to
insulin receptor substrate-1 (IRS1) through feedback. Up-
regulation of IRS-1 promotes AKT activity, which can attenuate
the antitumor efficacy (37). 

Several rapalogs, including everolimus, temsirolimus and
ridaforolimus, have been shown to possess antitumor activity
towards some types of cancer in pre-clinical and clinical studies
(Table I) (38). In a randomized phase III study, temsirolimus
prolonged overall (OS) and progression-free survival (PFS)
among patients with metastatic renal cell carcinoma (RCC),
compared to interferon treatment-alone and to combination
therapy with interferon and temsirolimus. The median OS was
10.9, 7.3 and 8.4 months, respectively, among patients who
received tensirolimus, interferon and combination therapy (39).
A phase III double-blind study randomized a total of 410
patients with RCC, whose disease progressed on VEGF tyrosine
kinase inhibitor to receive everolimus or placebo. The median
PFS was 4 and 1.9 months (p<0.0001) in the everolimus and
placebo groups, respectively (40).  

In a phase III study of 410 patients diagnosed with
progressive advanced neuroendocrine carcinoma, median OS in
the everolimus-treated group was significantly longer than that
in the placebo group (11 months vs. 4.6 months; p<0.001) (41).
Moreover, mTOR inhibitors have also shown their antitumor
activity in breast cancer, non-small cell lung cancer, endometrial
cancer, gastric cancer and non-Hodgkin’s lymphoma (41-49).

Not all patients with cancer will respond positively to mTOR
inhibitors, but a small group might obtain modest clinical
benefits. It is appropriate to identify biomarkers that can
enhance our ability to predict and monitor the clinical efficacy
of such an intervention and guide our selection of candidates
for mTOR-based therapies (50, 51). The tyrosine kinase
inhibitor (TKI) of EGFR has shown great promise as a
biomarker. In the Iressa Survival Evaluation in Lung Cancer
(ISEL) study, EGFR TKI treatment failed to prolong a survival
of all lung cancer patients. Non-smoking patients of Asian
origin have shown a significant increase in survival on therapy
with gefitinib (52, 53). The results of the Erlotinib in Previously
Treated Non–Small-Cell Lung Cancer (BR21) study also
showed a higher response rate to erlotinib among Asian patients,
and a statically significant correlation between the expression
of EGFR and better survival (54). As a first-line treatment of
pulmonary adenocarcinoma in Asian non-smokers or former
light smokers, gefitinib had a higher response rate than
carboplatin-paclitaxel in all patients and mutation subgroups
(43.0% vs. 32.2, p<0.001 in all patients; 71.2% vs. 47.3%,
p<0.001 in the mutation-positive subgroup). EGFR mutation
can be a positive biomarker to predict the responsiveness of
pulmonary adenocarcinoma to gefitinib (55). Cetuximab,
monoclonal antibody to EGFR, also exhibits similar potential.
Colon cancer patients with mutated V-Ki-ras2 Kirsten rat
sarcoma viral oncogene homolog (KRAS) responded poorly to
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cetuximab-irinotecan plus fluorouracil and luecovorin
(FOLFIRI), as compared to those with wild-type KRAS. The
response rate was 59.3% and 43.2% in the cetuximab-FOLFIRI
and FOLFIRI groups, respectively, in patients with wild-type
KRAS tumor (odds ratio=1.91), and 36.2% and 40.2% in
patients with mutant-KRAS tumor (odds ratio=0.8) (56). Thus,
KRAS mutation can be a negative-predictive biomarker of
response of colon cancer to EGFR-targeted therapies (57). 

Potential Markers of mTOR Inhibitors Efficacy

Some potentially optimal biomarkers for efficacy of mTOR
inhibitors were identified in the tumors, the skin or the peripheral
mononuclear cells (PBMCs) in studies to predict response and
survival (Table II) (45, 58-66). Higher levels of baseline
phospho-AKT (pAKT) in patients with non-small cell lung
cancer (NSCLC) were associated with poor PFS at an unadjusted
alpha level of 5% (45). Among 13 patients with NEC, higher
baseline phospho-mTOR (pmTOR) levels were correlated with
tumor response (p=0.001). Increasing AKT expression
(p=0.041) or reduced pmTOR expression (p=0.048) after 2-
week temsirolimus treatment was correlated with an increase of
time-to-progression (TTP) (59). However, pre-treatment
expression of AKT failed to predict clinical benefit in patients
with glioblastoma multiforme (GBM), NSCLC and RCC (58,
60, 65). In terms of downstream factors of mTOR, patients of
small cell lung cancer (SCLC) with disease control had higher
expressions of baseline S6 Kinase than those with progressive
disease (p=0.0093), among patients who received everolimus
treatment (65). In contrast, baseline expression of S6 kinase was
not a marker of radiological response in GBM patients or of
survival in SCLC patients (58, 65). In addition, higher expression
of baseline tumor-derived phospho-S6K1 (pS6K1) that were
noted in 71% of responding patients and 38% of non-responders
showed a correlation with MRI response at the of continuous
staining index cut-off of more than 200 among patients with
GBM. However, inhibition of PBMC-derived S6K1 at 24 h after
the first treatment (p=0.098) and before the fourth treatment
(p=0.082) did not predict a radiological response in patients (59).
Therefore, in terms of phospho-S6 (pS6), patients with RCC
with higher expression obtained clinical response to temsirolimus
(p=0.02). The median OS was 17.3 months in patients with high
expression of pS6 and 9.1 months in patients with intermediate
or low expression of pS6 (p=0.02) (60). The positive correlation
between pS6 expression and clinical efficacy was reproducible
in patients with sarcoma. Stable disease was significantly higher
in patients with high expression (≥20% of tumor cells), as
compared to patients with low expression (0-10% of tumor cells)
(73% vs. 33%, p≤0.05) (64). More than 50% inhibition of S6
phosphorylation in tumor were correlated with a better Ki-67
response in patients with GBM tumors receiving mTOR-
inhibitor therapy (61). However, no positive relation between
pS6 and the clinical response was demonstrated in patients with

NEC (59). pS6 inhibition was not associated with TTP among
sarcoma patients (67). To determine the role of phospho-
PRAS40 (pPRAS40), an increase in PRAS40 phosphorylation
after 1-week of rapamycin treatment had a shorter TTP in GBM
patients (p=0.049) (61). In a pre-clinical study, PTEN loss can
predict the antitumor activity of mTOR inhibitor (68). However,
patients with deletion of PTEN by fluorescence in situ
hybridization (FISH) or expression of PTEN by
immunohistochemistry (IHC) staining did not benefit from
mTOR inhibitors (58). The grade of PTEN expression was not
related to the effect of mTOR inhibition. The tumor response
was not significantly different between the high PTEN
expression group and the low expression group (58% vs. 33%,
p=0.55) in patients with RCC (60). Additionally, some other
factors including 4EBP1, phospho-4EBP1 (p4EBP1), and
hypoxia-induced factor-1 alpha (HIF1 α) did not exhibit a
significant correlation with clinical outcomes (63, 65).

Tumor-derived and Non-tumor-derived Markers 

Tumor-derived factors are frequently studied targets. pmTOR,
pS6K1, pS6, pAKT and PTEN expressions are significantly
associated with clinical outcomes (58-60, 62, 64). PBMCs are
an alternative source of studied proteins, but changes in PBMC-
derived pS6 and pS6K1 are not predictive (67). Even in a
preclinical study, everolimus exhibited its consistent inhibition
of 4EBP1 and S6K1 in the tumors, skin and PBMCs. A
reduction of 4EBP1 positively-correlated with an increased
formation of 4EBP1-eIF4E complex in all three tissues. A
decrease in S6K1 activity was positively associated with de-
phosphorylation of its downstream ribosomal S6 in tumor
extract. However, pS6 was only detected in tumor extract, but
not in skin and PBMCs extract in control animals (69). A phase
1 study of patients with advanced solid tumors who received
everolimus showed a significant inhibition of pS6 (p<0.001)
and p-eIF4G (p<0.001). Skin tissues demonstrated a significant
reduction of p4EBP1 (p<0.001) compared to tumors (p=0.058).
There was a consistent correlation between a decrease in
p4EBP1 and an increase in 4EBP1-eIF4E complex formation
in all three tissues. Phosphorylation of AKT was significantly
increased in the tumors (p=0.006) and the skin (p<0.001). A
significant decrease in pS6 was only demonstrated in tumors;
immunoblotting failed to detect a low level of baseline pS6 in
the skin and PBMCs (66). In patients with head and neck
squamous cell carcinoma, alterations of S6, pS6, 4EBP1,
p4EBP1, AKT and pAKT were demonstrated in tumors and
PBMCs. There was a significant temsirolimus-induced
reduction of pS6 in the tumors and PBMCs (p=0.008).
However, the significant reduction of p4EBP1 demonstrated in
the tumors was not reproduced in PBMCs (70). The detection
and expression of mTOR cascade in the tumors, the skin and
PBMCs varied in different types of cancer. The tumor seems to
be an optimal source of studied markers. 
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Baseline Expression and mTOR Inhibition

Baseline pmTOR, S6K, pS6K1, S6, pS6, PTEN and pAKT
exhibited significant correlations with clinical efficacy. Their
endogenous expressions suggest sensitivity to mTOR inhibition
and their potential as biomarkers (58-60, 62, 64, 65). Treatment-
specific alterations of pS6, pAKT and pPRAS40 were associated
with TTP (59, 61). Not all downstream targets were significantly
suppressed, however (70). No consistent associations were
demonstrated between mTOR inhibition and clinical benefits
(58, 67). Additionally, the dose of everolimus also impacted the
repression of mTOR signaling. eIF4G was completely inhibited
only at doses ≥50 mg (66). In addition, mTOR inhibition can
reactivate AKT and MAPK pathways, which may attenuate the

mTOR efficacy (37, 71). The role of pathway inhibition in the
prediction of response remains controversial. 

Conclusion 

mTOR inhibition plays a potential role in treatment of some
cancer types. Robust selection of markers will help in the
selection of good patient candidates based on disease type.
Many issues will impact on the validation of markers although
mTOR signaling can be detected in tumor, skin and PBMCs in
animal study (69). Several lines of evidence suggest an
association between tumor-derived proteins and clinical benefit
(58-60, 62, 64). PBMCs may be an alternative source of
markers for the pharmacodynamic study of mTOR inhibition.
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Figure 1. Pathways involving mammalian target of rapamycin. RTK, Receptor tyrosine kinase; IRS, insulin receptor substrate; PI3K,
phosphatidylinositol 3-kinase; PDK, phosphoinositide-dependent protein kinase; mTORC1, mammalian target of rapamycin complex 1; mTORC2,
mammalian target of rapamycin complex 2; RAPTOR, regulatory-associated protein of mTOR; PRAS40, proline-rich AKT substrate 40; S6, ribosomal
protein S6; S6K1, kinase 1; 4EBP1, eukaryotic translation initiation factor 4E binding protein 1; eIF4E, eukaryotic translation initiation factor 4E;
LKB1, liver kinase 1; AMPK, AMP-activated protein kinase; TSC1, tuberous sclerosis 1; TSC2, tuberous sclerosis 2; REDD1, regulated in development
and DNA damage 1; RHEB, RAS homolog enriched in brain; ERK; AKT, proline-rich protein kinase B; RAS, the rat sarcoma viral oncogene homolog.



However, not all proteins involved in the mTOR pathway can
be detected in all three tissues. There were some discrepancies
among tumor, skin and PMBCs in terms of expression and
pharmacodynamic profiles of mTOR pathways, although the
degree of mTOR inhibitor-induced inhibition in the tumor was
correlated to that in the skin (66, 70). More studies must
elucidate the correlation between skin-derived markers and
clinical efficacy, but tumors currently seem to be a better source
of studied biomarkers for mTOR inhibitor. 

Baseline expressions of targeted proteins have been
frequently studied. There was a disparity between dose and

pharmacodynamic markers (66). Once it was determined that
an active mTOR pathway is not critical in tumor growth,
pathway inhibition failed to be an ideal marker of growth-
inhibitory effects (7). Although mTOR blockade-specific
compensatory alternations of pAKT and pPRAS40 can be a
potential predictor of TTP, feedback alternations impact on the
predictive role of mTOR inhibition (59, 61). Baseline
expressions of targeted proteins may be more feasible than
pathway inhibition. 

Tumors, the skin and PBMCs are common sources of studied
markers. However, expression of eIF-4E in the histological
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Table I. Clinical outcomes of therapy with inhibitors of mammalian target of receptor. 

Study (Ref.), agent Disease No. of patients Objective Progression free 
response rate (%) survival (months)

Phase III
Hudes et al., 2007 (39) RCC

Temsirolimus 209 8.6 3.8
Interferon  207 4.8 1.9
Temsirolimus+interferon 210 8.1 3.7

Motzer et al., 2008 (40) RCC
Everolimus 272 1 4
Placebo 138 0 1.9

Hess et al., 2008 (48) MCL
Temsirolimus 54 22 4.8
Temsirolimus 54 6 3.4
Investigators’ choice 54 2 1.9

Yao et al., 2011 (42) P-NET
Everolimus  207 5 11
Placebo 203 2 4.6

Phase II
Ansell et al., 2011 (76) MCL

Temsirolimus plus rituximab  69 (ITT) 59 9.7 (TTP)
Baselga et al., 2010 (44) Breast cancer

Everolimus plus 
letrozole 138 68.1 NA
Letrozole alone 132 59.1 NA

Chan at al., 2005 (43) Breast cancer
Temsirolimus  54 7.4 NA
Temsirolimus  55 10.9 NA

Witzig et al., 2011 (49)
Everolimus Aggressive lymphoma (total) 77 30 3
DLBCL 47 30 NA
MCL 19 32 NA
FL Gr 3 8 38 NA
Others 3 0 NA

Ghobrial et al., 2010 (77) WM
Everolimus  50 70 Not reached 

Rizzieri et al, 2008 (78) Hematological malignancies
Deforolimus  52 10 NA

Okuno et al., 2010 (79) Sarcoma 
Temsirolimus 41 5 2 (TTP)

Doi et al., 2010 (47) Gastric cancer
Everolimus 53 0 2.7

ITT, Intent to treat; NA, not applicable; TTP, time to progression. RCC, renal cell carcinoma; MCL, mantle cell lymphoma; P-NET, pancreatic
neuroendorine tumor; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; WM, Waldenström macroglobulinemia.
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Table II. Markers studied for response to therapy with mammalian target of rapamycin inhibitors.

Marker Disease Source of markers End point p-Value Reference 

PTEN
Deletion GBM Tumor MRI response vs. no response, 50% vs. 73% 0.17 58
Expression    GBM Tumor MRI response vs. no response, 73% vs. 95% 0.14 58
Expression

Low vs. high RCC Tumor *Clinical response, 33% vs. 58% 0.55 60
Positive RCC Tumor ORR Temsirolimus vs. interferon, 8% vs. 7% 1 63

RCC Tumor Median OS (HR, 0.81) 63 
Temsirolimus vs. interferon, 11.3 vs. 7.1 months

RCC Tumor Median PFS
Temsirolimus vs. interferon, 5.7 vs. 3.8 months (HR, 0.66) 63 

Negative RCC Tumor ORR (0.3006) 63
Temsirolimus vs. interferon, 20% vs. 10%

RCC Tumor Median OS (HR, 0.35) 63
Temsirolimus vs. interferon, 10.7 vs. 8.3 months

RCC Tumor Median PFS (HR, 0.99) 63
Temsirolimus vs. interferon, 5.8 vs. 4.3 months

Akt
Higher GBM Tumor MRI response vs. no response, 71% vs. 58% 0.39 58

SCLC Tumor OS > 0.2 65

pAkt
Increasing NEC Tumor Better TTP 0.041 59
Expression NSCLC Tumor Significant correlation between pAKT expression 45

and PFS at alpha level of 5%
Higher GBM Tumor MRI response vs. no response, 35% vs. 58% 0.15 58
Higher SCLC Tumor Poor OS 0.063 65
Higher RCC Tumor Clinical response 0.07 60

pmTOR
Higher NEC Tumor Better tumor response 0.01 59
Decreasing NEC Tumor Better TTP 0.048 59  

4EBP1
SCLC Tumor OS >0.2 65

p-4EBP1
SCLC Tumor OS >0.2 65

S6K
Higher SCLC Tumor Better disease control 0.0093 65

GBM Tumor MRI response vs. no response, 76% vs. 77% 0.99 58
SCLC Tumor OS > 0.2 65

pS6K
Higher GBM Tumor MRI response vs. no response, 71% vs. 38% 0.04 58

SCLC Tumor OS > 0.2 65
Inhibition 24 
hours after 
first treatment GBM PBMC Radiological response 0.98 58

Inhibition 
pre-fourth 
dose treatment GBM PBMC Radiological response 0.82 58

pS6
High level   RCC Tumor Clinical responsea 0.02 60
bHE (≥ 20% of  
tumor cells) vs. 

Table II. continued



tumor-free margins had shown a significant correlation with
poor outcomes among head and neck cancer patients (72). In
an animal study, mTOR inhibition delayed the time of tumor
development in a minimal residual disease model that mimicked
the mTOR-positive tumor margins (73). Several active clinical
trials to study the role of mTOR inhibitor in adjuvant treatment
of head and neck cancer patients will clarify the correlation
between markers from the surgical margin and efficacy of
adjuvant therapy.

More studies are necessary to settle the controversial
issues. Subcellular location of AKT played an important role
in pathology and survival. There was an association between
nuclear AKT expression and disease-specific survival (62).
Human papillomavirus (HPV) plays a critical role in
tumorigenesis of head and neck squamous cell carcinoma
(HNSCC) (74). A tissue microarray study suggested the
correlation between p16 expression and expression of
phosphorylated eIF-4E. There was no association between
expression of p16 and phosphorylated S6 or 4EBP1. HPV
can activate eIF-4E through an mTOR-independent pathway
(75). However, a preclinical study suggested mTOR
activation with subsequent elevation of pS6 in HPV-

associated HNSCC. The mTOR blockade significantly
inhibited tumor growth in mice (11). Therefore, more
research is needed to elucidate the role of the mTOR
pathway in tumorigenesis in HPV-positive HNSCC. 

From our review, baseline expression of tumor-derived pS6
seems to be a candidate of efficacy of mTOR inhibition. Overall,
more studies are needed to optimize the condition and source of
studied proteins and to select a protein as a better biomarker. 
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