Vessel Dilator and Kaliuretic Peptide Inhibit ERK 1/2 Activation in Human Prostate Cancer Cells

YING SUN1, EHRENTRAUD J. EICHELBAUM1, HAI WANG2 and DAVID L. VESELY1

1Departments of Internal Medicine, Molecular Pharmacology and Physiology University of South Florida
Cardiac Hormone Center and James A. Haley Veterans Medical Center Tampa, Florida 33612;
2Department of Interdisciplinary Oncology, Molecular Oncology Program
H. Lee Moffitt Cancer Center and Research Institute Tampa, Florida 33612, U.S.A.

Abstract. Background: Vessel dilator and kaliuretic peptide have anticancer effects in human prostate adenocarcinomas. Materials and Methods: Vessel dilator, kaliuretic peptide and cyclic GMP's effects on ERK 1/2 kinase were examined in human prostate adenocarcinoma cells. Results: Vessel dilator and kaliuretic peptide decreased the activation of ERK 1/2 over a concentration range of 0.01 μM to 1 μM. Vessel dilator and kaliuretic peptide (each 1 μM) inhibited the phosphorylation of ERK 1/2 kinase 96% (p<0.0001) and 70% (p<0.001), respectively. Both had significant effects within five minutes at their 0.01 μM concentrations. The inhibition of ERK 1/2 lasted for at least two hours secondary to both. Their ability to inhibit ERK 1/2 was decreased by cyclic GMP antibody and cyclic GMP itself decreased ERK 1/2 phosphorylation. Conclusion: Vessel dilator and kaliuretic peptide both inhibit ERK 1/2 kinase mediated via cyclic GMP as part of their anticancer mechanism(s) of action.

Extracellular-signal regulated kinase (ERK) 1/2 is a mitogen activated protein kinase (MAP kinase) important for the growth of cancers (1, 2). Growth factors such as epidermal growth factor (EGF), fibroblast growth factor, platelet derived growth factor and vascular endothelial growth factor (VEGF) work after binding to their specific receptor tyrosine kinases via ERK 1/2 kinase to cause proliferation (1). EGF, for example, when it binds to its EGF receptor, causes its autophosphorylation on tyrosine residues and recruits the Grb2-Sos complex to turn on membrane-associated Ras, which then activates the Raf-Mek 1/2 – ERK 1/2 kinase cascade (1).

Cardiac natriuretics are a family of peptide hormones that have significant anticancer effects on human prostate, breast, colon and pancreatic adenocarcinoma cells (3-6), as well as small cell and squamous lung carcinoma cells in vitro (7, 8). One gene in the heart of this peptide hormones family synthesizes a 126 amino acid prohormone, which with proteolytic processing results in four peptide hormones consisting of: 1) long acting natriuretic peptide, LANP (i.e., the first 30 a.a. of this prohormone); 2) vessel dilator (VDL; a.a. 31-67); 3) kaliuretic peptide (KP, a.a. 79-98); and 4) atrial natriuretic peptide (ANP), a.a. 99-126 of the 126 a.a. prohormone (Figure 1). Vessel dilator appears to have the strongest anticancer effects decreasing up to 97% the number of human prostate and colon cancer cells within 24 hours (5, 6).

In vivo, vessel dilator decreases the volume of human pancreatic adenocarcinomas growing in athymic mice the most (49% decrease in tumor volume in one week), while all four peptide hormones stop the growth of this cancer in vivo (9).

It has been found that a modified kaliuretic peptide (i.e., a.a. 73-102) decreases phosphorylation of ERK 1/2 in human alveolar type II epithelial cells (ATCC A549) (10). The present investigation is to determine if an unmodified kaliuretic peptide, i.e., the natural hormone, and vessel dilator, the peptide hormone with the most significant anticancer effects (3-9), could directly inhibit ERK 1/2 kinase in prostate cancer cells. Since both vessel dilator and kaliuretic peptide were demonstrated to inhibit ERK 1/2 kinase in dose-response and time-sequenced experiments, it was investigated whether their effects were specifically mediated by cyclic GMP, the intracellular mediator of many of these peptide hormones' effects (11, 12).

Materials and Methods

Human prostate adenocarcinoma cells. A cell line (ATCC number HTB-81; DU 145) of human prostate adenocarcinoma cells was
purchased from American Type Culture Association (ATCC), Manassas, VA, USA. This prostate cancer cell line was derived in 1978 by K.R. Stone et al. (13) from a 69 year old man. These homogenous cells when injected into athymic mice form moderately differentiated prostate adenocarcinomas within 21 days (13).

Culture of the prostate adenocarcinoma cells. Propagation of these cells was in Roswell Park Memorial Institute (RPMI) 1640 medium with 2 mM/L-glutamine adjusted with addition of 1.5 g/L sodium bicarbonate, 90% 10 mM HEPES, 1 mM sodium pyruvate, and heat-inactivated 10% fetal bovine serum (Sigma Chemical bicarbonate, 90% 10 mM HEPES, 1 mM sodium pyruvate, and fungizone at a temperature of 37°C, 5% CO2 as recommended by the ATCC. The cells were subcultured every 6-8 days. The growth medium was changed every three days. The peptide hormones were from Phoenix Pharmaceuticals, Inc., Belmont, CA, USA.

Research protocol. The human prostate cancers were incubated for 5, 10, 15, 30 and 45 minutes, or 1 hour and 2 hours, respectively, in dose-response curves with 0.01 µM to 1 µM of kaliuretic peptide or vessel dilator. After the respective time periods the prostate cancer cells were placed on ice, washed with cold PBS, and lysed in lysis buffer (1% Triton X-100, 50 mM Tris-Cl, PH 7.5, 150 mM NaNCl, 1 mM EDTA, 1 mM EGTA, 5 mM sodium pyrophosphate, 25 mM NaF, 0.5 mM sodium orthovanadate, 1 mM dithiothreitol, 1 µg/ml pepstatin, 2 µg/ml leupeptin, 2 µg/ml aprotinin, 0.1 mg/ml phenylmethanesulfonyl fluoride [PMSF]). The cell lysates were centrifuged at 13,400 rpm for 15 minutes at 4°C. Protein concentrations in cell lystate supernatants were determined using the Bradford protein assay (Bio-Rad, Hercules, CA, USA). Thirty µg of each protein sample was utilized for SDS-polyacrylamide gel electrophoresis and immunoblotting analysis.

Immunoblotting analysis. After heating (100°C) in 1xSDS loading buffer for 5 minutes, the proteins were separated by 10% SDS-polyacrylamide gels (120 volts for 90 min) and transferred to nitrocellulose membranes (Hybond-C Extra, Amersham Biosciences Corporation, Piscataway, NJ, USA) for 90 minutes at 110 volts in transfer buffer. The membranes were washed four times with 1xTBS. The membranes were blocked with 5% non-fat dry milk for 1 hour with gentle rocking, washed three more times with 1xTBS, and incubated overnight at 4°C with gentle rocking. These membranes were washed three times (8 min each time) with TBS. The membranes were then immediately incubated with goat anti-rabbit, horseradish peroxidase (HRP)-conjugated secondary antibody (Bio-Rad, Hercules, CA, USA) at a dilution of 1:1000 for 1 hour. The immunoblot membranes were washed again and then examined by the chemiluminescent method. The primary antibody (P-ERK [E-4]) for measuring the detection of ERK 1 and ERK 2's phosphorylation at Try-204 and the antibody for cyclic GMP effects on ERK 1/2 kinase. Cyclic GMP is one of the known mediators of the biologic effects of these peptide hormones (11, 12). For the mechanism of action of these peptide hormones' ability to inhibit ERK 1/2 kinase in prostate adenocarcinoma cells, 1 µM of 8-bromoguanosine 3',5'-cyclic monophosphate (i.e., 8-bromo-cyclic GMP, Sigma Chemical Company), the cell-permeable analog of cyclic GMP was utilized.

Do these peptide hormones’ ability to inhibit ERK 1/2 in prostate adenocarcinoma cells specifically involve cyclic GMP? To determine if the inhibition of ERK 1/2 kinase in prostate adenocarcinoma cells was cyclic GMP specific, these peptide hormones (1 µM each) and the specific cyclic GMP antibody in 1:80 dilution (Sigma Chemical Co.) were incubated together for 30 minutes followed by the above Research Protocol and Immunoblotting.

Statistical analysis. Data are expressed as means±SEM and evaluated using analysis of variance (ANOVA) with repeated measures design for within-group comparisons. A p<0.05 was considered the criteria to be statistically significant.

Results

Dose-response and time sequence studies. Vessel dilator inhibited the activation of ERK 1/2 kinase by 92% (p<0.00001) within ten minutes at its 1 µM concentration (Figure 2). At 30 minutes, there was a 96% decrease (p<0.00001) in phosphorylation of ERK 1/2 secondary to 1 µM of vessel dilator (Figure 2). Even after two hours there was a 69% decrease (p<0.001) in the activation of ERK 1/2 secondary to 1 µM of vessel dilator (Figure 2). Decreasing the concentration of vessel dilator 10-fold in dose-response studies to 0.1 µM resulted in a 55% (p<0.001) decrease in the activation of ERK 1/2 at 30 minutes and a 28% decrease (p<0.05) in the phosphorylation of ERK 1/2 at 45 minutes (Figure 3). After 45 minutes the ability of 0.1 µM vessel dilator to decrease the activation of ERK 1/2 was no longer...
significant (Figure 3). A 100-fold decrease in vessel dilator in these dose-response experiments to 0.01 μM revealed that this concentration vessel dilator caused a maximal decrease (67%, p<0.001) at 10 minutes, but there was a significant decrease (37%, p<0.05) of the activation of ERK 1/2 as early as five minutes (Figure 4). As with the 10-fold higher concentration, i.e., 0.01 μM of vessel dilator resulted in a significant (51%, p<0.001) decrease in the phosphorylation of ERK 1/2 at 45 minutes. At 60 and 120 minutes this lower concentration of vessel dilator became not significant (Figure 4).

The natural hormone kaliuretic peptide (1 μM) as opposed to the modified hormone examined previously, decreased the activation of ERK 1/2 in human prostate adenocarcinoma cells by 30% (p<0.01) within 10 minutes and caused a 51% (p<0.001) decreased phosphorylation at 30 minutes (Figure 5). With continuing exposure to 1 μM of kaliuretic peptide for longer periods, there was 70% (p<0.0001) decrease at 45 minutes and a 65% (p<0.001) decrease in ERK 1/2 phosphorylation at 60 minutes (Figure 5). Kaliuretic peptide at its 1 μM concentration continued
to decrease (48%, \(p < 0.001 \)) the activation of ERK 1/2 for two hours (Figure 5). When the concentration of kaliuretic peptide was decreased to 0.1 \(\mu \text{M} \), the inhibition of phosphorylation of ERK 1/2 did not begin until 15 minutes (32% decrease, \(p < 0.05 \)) (Figure 6). Kaliuretic peptide (0.1 \(\mu \text{M} \)) had its most significant decrease in activation of ERK 1/2 in a delayed fashion with the amount of decrease at 60 minutes and 2 hours being 60% and 61%, respectively (\(p < 0.001 \) for both) (Figure 6). When kaliuretic peptide’s concentration was decreased another 10-fold to 0.01 \(\mu \text{M} \), its decrease in the activation of ERK 1/2 began as early as 5 minutes (15% decrease, \(p < 0.05 \)), but its maximal inhibition of ERK 1/2 of 30% (\(p < 0.05 \)) at 30 minutes was less than half of that obtained with 0.1 \(\mu \text{M} \) and 1 \(\mu \text{M} \) (Figure 7).

Cyclic GMP antibody specifically blocks vessel dilator and kaliuretic peptide’s inhibition of ERK 1/2 kinase. Cyclic GMP (1 \(\mu \text{M} \)) inhibited the phosphorylation of ERK by 36%, while kaliuretic peptide and vessel dilator (1 each at \(\mu \text{M} \)) in the same experiment inhibited the phosphorylation of ERK 1/2 by 45% and 48% (Figure 8). When cyclic GMP antibody was added to kaliuretic peptide there was no inhibition of the activation of ERK 1/2, rather there was a 14% increase in the phosphorylation of ERK 1/2 (Figure 8). The addition of the cyclic GMP antibody decreased the inhibition of phosphorylation of ERK 1/2 by vessel dilator in half, from a 48% inhibition to a 24% inhibition (Figure 8).

Discussion

The results of this investigation define a part of the mechanism(s) of action of these peptide hormones in cancer cells. This is the first investigation demonstrating that the native peptide hormone, kaliuretic peptide, can decrease the phosphorylation of ERK 1/2 whose phosphorylation decreased up to 70%. It is also the first demonstration that kaliuretic peptide can decrease the activation of ERK 1/2 in any cancer cell. Vessel dilator was investigated for the first time for its’ ability to inhibit phosphorylation of ERK 1/2 and it inhibited the phosphorylation ERK 1/2 by 96% (Figure 2) at its 1 \(\mu \text{M} \) concentration in a dose-response and time-sequenced manner. In the dose response-curves (Figures 2-
6) of the present investigation vessel dilator was a stronger inhibitor of ERK 1/2 than kaliuretic peptide at every concentration. This information is consistent with vessel dilator’s ability to decrease (i.e., eliminate) more of human prostate adenocarcinoma cells in cell culture within 24 hours (5). Vessel dilator eliminates up to 97% of human prostate cancer cells in 24 hours, which is consistent with the present demonstrated ability to inhibit 96% of the activation of ERK 1/2. Kaliuretic peptide kills 88% of human prostate cancer cells in 24 hours (5), which is also consistent with its ability to decrease the activation of ERK 1/2 by 70% in the present investigation, as kaliuretic peptide also inhibits DNA synthesis in human prostate cancer cells as part of its mechanism of action (5). The present investigation suggests that the inhibition of the phosphorylation of ERK 1/2 is one of the mechanisms involved in vessel dilator and kaliuretic peptide’s ability to decrease the number of viable cancer cells in vitro (3-8), and their ability to stop the growth and decrease the volume of human cancers in vivo (9). Thus, in addition to inhibiting DNA synthesis within cancer cells (3-8), vessel dilator and kaliuretic peptide’s anticancer effects involve their ability to decrease the activation of extracellular-signal regulated kinase (ERK) 1/2, a cancer growth promoting peptide that translates from the extracellular membrane to the nucleus of the cell to promote growth (1, 2).

With respect to the mechanism of how vessel dilator and kaliuretic peptide inhibit the phosphorylation of ERK 1/2, one of the second messengers of their biologic effects, i.e., cyclic GMP (11, 12), was found using 8-bromo-cyclic GMP (1 μM) to inhibit the phosphorphylation of ERK 1/2 by 36% in human prostate cancer cells similar in that experiment to kaliuretic peptide and vessel dilator. Cyclic GMP’s mimicking the effects of vessel dilator and kaliuretic peptide on the activation of ERK 1/2 in the same human prostate cancer cells suggests that cyclic GMP is one of the mediators of these peptide hormones’ ability to decrease cancer cell number (5) and inhibit the activation of ERK 1/2 in prostate adenocarcinoma cells. This was further defined in the present investigation where, utilizing a cyclic GMP antibody, it was demonstrated for the first time that this antibody could block all of kaliuretic peptide’s effects on the activation of ERK 1/2 and decrease in half vessel dilator’s ability to inhibit the phosphorylation of ERK 1/2 (Figure 8).
Utilizing this antibody suggests that cyclic GMP’s effects of decreasing the activation of ERK 1/2 are specific for kaliuretic peptide, i.e., not due to some other mediator and important for vessel dilator’s inhibition of the activation (i.e., phosphorylation) of ERK 1/2.

Acknowledgements

We thank Charlene Pennington for her excellent secretarial assistance. This work was supported in part by the Department of Veterans Affairs Merit Review Grant Award (DLV, USA).

References

Received July 3, 2006
Accepted July 12, 2006