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Abstract. Cancer is characterized by uncontrolled cell
proliferation due to the aberrant activity of various proteins. Cell
cycle-related proteins are thought to be important in several
functions, such as proliferation, invasion and drug resistance in
human malignancies. Never in mitosis gene A-related kinase 2
(NEK2) is a cell cycle-related protein. NEK?2 is highly expressed
in various tumor types and cancer cell lines. NEK2 expression
is correlated with rapid relapse and poor outcome in multiple
cancer types. Several researchers have demonstrated that NEK2
inhibition results in anticancer effects against many types of
cancers, both in vitro and in vivo. Recent research strongly
indicates the advantages of NEK2-targeted therapy for cancer.
This review focuses on the current understanding of NEK2 in
cancer and the rationale of a xenograft cancer model for cancer
treatment. A possible therapeutic strategy, such as inhibitor and
nucleic acid medicine targeting of NEK2, is also discussed.

Cancer is characterized by uncontrolled cell proliferation due
to the aberrant activity of various proteins (1). Recent studies
have revealed that cell cycle-related proteins play important
roles in multiple cancer types (2, 3). Many forms of cancers
are uniquely dependent on these proteins and hence are
selectively sensitive to their inhibition (1). In this regard, cell-
cycle regulators are effective targets for cancer treatment.
Never in mitosis gene A-related kinase 2 (NEK2) is a
cell cycle-related protein, along with aurora kinases and
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polo-like kinases (4, 5). Several studies have been
published concerning the roles of NEK2 in chromosome
instability, tumorigenesis, progression, and drug resistance
in cancer (6-8).

This review focuses on the current understanding of
NEK?2 in cancer progression and the rationale of a xenograft
cancer model for cancer treatment. A possible therapeutic
strategy, such as inhibitor and nucleic acid medicine
targeting of NEK2, is also discussed.

Structure of NEK2

NEK?2 is structurally related to the mitotic regulator never
in mitosis gene A (NIMA), which is cloned from Aspergillus
nidulans (9). Eleven mammalian homologs of the NEK
family, named NEK1 to NEK11, have been identified (5,
10). The NEK family comprises several serine/threonine
kinases and is important for cell division and cell-cycle
regulation, as well as NIMA (11). NEK2 is the closest
mammalian isoform to NIMA and has structures with a
serine-threonine kinase domain located at the amino-
terminal and multiple regulatory motifs, such as a leucine
zipper, coiled coil, centrosome and microtubule localization
sites, protein phosphatase 1 (PP1) binding site, KEN-box,
nucleolar localization sites, anaphase-promoting complex
(APC) binding site, and destruction box (D-box) at the
carboxyl-terminal site (12). NEK2 in mammals has three
splice variants: NEK2A, NEK2B, and NEK2C (13, 14).
NEK?2A and NEK2B differ at their carboxy-termini (15, 16),
and NEK2C lacks an eight-amino acid sequence from the
carboxy-terminus of NEK2A (14). NEK2A is evenly
distributed within the nuclei and cytoplasm, while NEK2B
is mainly distributed in the cytoplasm, and NEK2C is
mainly distributed in the nuclear region (14). As NEK2A,
NEK2B and NEK2C exhibit overlapping or identical
substrate usage, these variants are collectively referred to
here as NEK2 (17-20).
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NEK2 Expression in Cancer

High expression of NEK2 was first identified in pediatric
solid tumors called Ewing’s sarcoma using microarray
analysis (21). We reported that NEK?2 is highly expressed in
several cancer types, such as cholangiocarcinoma (22), breast
(7, 23-31), colorectal (27, 32-35), and pancreatic (36, 37)
cancer. Consistently, several researchers reported that high
expression of NEK2 is identified in various cancer types,
including testicular seminoma (27, 38, 39), cervical tumor
(27), primary liver cancer (40), hepatocellular carcinoma (8,
41), prostate cancer (27, 42), lung cancer (27, 43-45),
ovarian cancer (46), renal cell cancer (47, 48), myeloma
(49), peripheral nerve sheath tumors (50), follicular
lymphoma (51, 52) and diffuse large B-cell lymphoma (52).

NEK2 overexpression is significantly associated with
histological differentiation, higher in TNM stage, lymph
node metastasis and tumor invasion in colon (33), pancreatic
(37), and lung (43) cancer. NEK?2 is a promising predictor of
poor prognosis in cancer because its expression is highly
correlated with rapid relapse and poor outcome in multiple
cancer types.

Functional Role of NEK2 in Cancer

NEK?2 expression is low in the G, phase of the cell cycle,
increasing through S and G, to reach a peak in late G,/M,
and decreasing upon cell entry into mitosis (5, 15). Similarly,
NEK2 activity is stronger in the S and G, phases compared
to that in other phases. NEK2 is responsible for starting
centrosome separation at the G,/M phase of the cell cycle
(53). NEK2 overexpression results in chromosome instability
and aneuploidy in cancer cells (6, 54, 55). In addition, NEK2
overexpression activates several oncogenic pathways and
ATP-binding cassette transporters, thereby leading to cell
proliferation, invasion, and drug resistance (55).

Proliferation. We demonstrated that increased NEK2 promoted
cell growth and NEK2-targeting siRNA inhibited proliferation
in cholangiocarcinoma (22). NEK2 siRNA suppressed tumor
growth in a xenograft nude mouse model (22). Another group
also demonstrated that increased expression of NEK2
promoted cell proliferation, while its suppression inhibited
proliferation in various cancer types (24, 28,31, 42, 54). Zhou
et al. reported that both the PP1/AKT and the WNT signaling
pathways may be involved in NEK?2-induced cell proliferation
(54). Several studies revealed that NEK2 expression is strongly
related to Ki-67, a proliferation marker, in various malignancies
(31, 44, 54). These data indicate the critical roles of NEK?2 in
cancer proliferation, both in vitro and in vivo.

Invasion and motility. Invasiveness and motility are
associated with various genes in many cancer types (56-58).
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Hayward et al. first reported that NEK2 overexpression
preceded metastasis in cancer cells (24). We previously
reported that NEK2 expression affected invasion and motility
in breast cancer and pancreatic cancer cells (23, 36). Xia et
al. reported that NEK2 played an important role in tumor
metastasis by regulating the expression and localization of
[-catenin, because NEK2 overexpression induced nuclear
accumulation of B-catenin in multiple myeloma and lung
cancer cells (55). NEK2 induced metastasis in cooperation
with RAS and SRC signaling and promoted chromosomal
instability in cancer (59). From these data, NEK?2 is believed
to be involved in invasion and motility and to promote
metastasis in cancer.

Apoptosis. The inactivation of apoptosis is central to cancer
progression. Apoptosis is involved in the resistance to
therapy of many kinds of cancer.

NEK?2 depletion leads to aneuploidy and cell-cycle arrest;
thereafter, apoptosis was found to be induced as a result of
mitotic errors in various cancer cell lines (19, 27, 28, 54).
Naro et al. reported that NEK2 inhibition in cancer cells led
to high expression of cleaved PARP and activated caspase-
3, caspase-8, and caspase-9 in vitro and in a xenograft mouse
model of myeloma (27, 54). These data indicate an important
role of NEK2 against the apoptosis pathway. However, Lee
and Gollahon reported that NEK?2 suppression did not induce
strong mitotic arrest in the G,/M phase, but instead induced
apoptosis. This indicates that the role of NEK2 may be
different from other cell cycle-related kinases in regulation
of cell cycle (60). The mechanisms concerning apoptosis by
NEK?2 suppression remain unclear in cancer cells.

Drug sensitivity and resistance. Drug sensitivity and
resistance are important issues in cancer treatment.
Developing a novel strategy for enhancement of sensitivity
to chemotherapeutic agents is one of the most serious
challenges in improving the prognosis of patients with
cancer. NEK2 was shown to regulate chemotherapeutic
resistance through several genes, such as ATP binding
cassette subfamily G (ABCG), aldehyde dehydrogenase 1
family, member A1 (ALDHIAI), and Retinoid X receptor
alpha (RXRA) in malignancies (8, 61). NEK2 overexpression
is associated with drug-resistant ovarian cancer and multiple
myeloma (46, 62). Some researchers reported NEK2 to be
involved in to 5S-fluorouracil, tamoxifen,
trastuzumab, paclitaxel and doxorubicin (7, 60, 63).
Therefore, NEK2 appears to contribute to resistance to
several drugs in multiple cancer types.

Drug efflux plays an essential role in increasing drug
resistance in a variety of malignancies. NEK2 depletion

resistance

reduced drug efflux pump activity and inhibited drug
resistance (61). NEK2 inhibition might be a therapeutic
option for treating chemoresistant cancer cells.
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We previously reported that the combination of NEK2
siRNA and cisplatin showed additive antitumor effects on
colorectal cancer cells (32). siRNA and antisense
oligonucleotide against NEK2 worked synergistically with
paclitaxel and doxorubicin by promoting apoptosis of breast
cancer cells (60). NEK2 combined treatment would be useful
to abrogate the resistance to chemotherapy and further
improve clinical outcomes.

Therapeutic Potential of NEK2
in a Xenograft Cancer Model

The studies using various cancer cell lines suggest that the
inhibition of NEK2 may be beneficial for cancer treatment.
Even if agents are effective against cell lines, they often
demonstrate no efficacy in xenograft model. In this regard,
it is important to confirm the therapeutic potential of NEK2
for cancer treatment in several xenograft cancer models, such
as subcutaneous tumors, peritoneal dissemination and liver
metastasis. Several researchers reported the efficiency of
NEK?2 inhibition in various xenograft cancer models.

Subcutaneous tumors. We reported that NEK2 silencing
suppressed xenograft tumor growth of cholangiocarcinoma
(22), and breast (23), colorectal (32), and pancreatic (36)
cancer. In addition, NEK2 inhibition showed efficiency in
other xenograft cancer models, such as myeloma, and
prostate, liver, colorectal, and breast (42, 54, 64-66) cancer.

Peritoneal dissemination. Peritoneal dissemination is a major
undesirable complication frequently associated with
inoperable cases of cancer. Many patients with cancer die of
peritoneal dissemination because of lack of effective and
useful treatment. NEK2 overexpression is associated with
serosal invasion, lymphatic and peritoneal
dissemination (34).

We previously reported that NEK2 siRNA improves the
survival of nude mice with peritoneal dissemination of
cholangiocarcinoma (22) and pancreatic cancer (36) xenografts.
The total nodule number and weight of peritoneal dissemination
in the NEK2 siRNA-treated group were significantly lower than
those in the control siRNA-treated group.

invasion,

Liver metastasis. Multiple metastases are considered to be
detrimental to the outcome of cancer because it is impossible
to remove all lesions during an operation. Although NEK?2
is highly expressed in liver metastases, the significance of
NEK2 expression using xenografts has not been investigated.

We previously examined the potential of NEK2 siRNA for
metastasis of pancreatic cancer (36). NEK2 siRNA reduced
the number and the area of liver metastases from pancreatic
cancer in a rat xenograft model (36). NEK2 siRNA was able
to prevent the progression of liver metastasis efficiently.

NEK?2-targeted Cancer Therapy

Despite the development of chemotherapy for cancer, clinical
outcomes have not been markedly improved in many types
of cancer. Novel strategies are therefore required to treat
cancer, especially in the case of local recurrence, peritoneal
dissemination and liver metastasis. As NEK2 has a critical
role in the progression of malignancies, as mentioned
previously, it is attractive as a target for novel anticancer
therapies (55, 67).

NEK?2 inhibitors. Several small-molecule inhibitors of NEK2
were developed in high-throughput screening (68) (Table I).
These inhibitors showed their therapeutic effectiveness
against cancer cells both in vitro and in vivo.

Propynamidel6 was designed as an irreversible, cysteine-
targeted inhibitor of NEK?2 through a structure-based
approach. This compound inhibited cellular NEK2 without
affecting the mitotic kinases, cyclin-dependent kinase 1
(CDK1), aurora B, or polo-like kinase 1 (PLK1). This
compound was the first small molecule shown to inactivate
NEK?2 kinase activity in cells (69).

Highly expressed in cancer 1 (HEC1) is a critical mitotic
regulator, which is phosphorylated by NEK?2 in proper
chromosome segregation (70). TAI-95 and TAI-1, small
molecules targeting the HEC1/NEK2 pathway, inhibited
tumor growth in xenograft mouse models of liver, colorectal
, and breast cancer (60, 64-66). A 4-aryl-N-arylcarbonyl-2-
aminothiazole was designed and synthesized as an HEC1/
NEK?2 inhibitor. This compound also demonstrated inhibition
of tumor growth in a xenograft breast cancer model (71).

A small molecule, N-(4-[2,4-dimethyl-phenyl]-thiazol-2-
yl)-benzamide (INH1), specifically disrupted HEC1/NEK?2
interaction via direct HEC1 binding. This INH-bound HEC1
triggered NEK2 degradation and eventually induced cell
death. INHI effectively inhibited the proliferation of breast
cancer cell lines (72, 73). Several INH derivatives were
designed and synthesized, which significantly suppressed
xenograft tumor growth without obvious toxicity (74).

The epidermal growth factor receptor /human epidermal
growth factor receptor 2 (EGFR/HER?2) inhibitors neratinib
and pelitinib also inhibited human NEK?2 activity in vitro
(59). Aminopyridine (R)-21, a potent and selective inhibitor
based on an aminopyridine scaffold, modulated NEK?2
activity in cells (75). Two viridian-like compounds,
CC004731 and CC004733, suppressed NEK?2 activity and
inhibited the proliferation of human cancer cell lines (76).
HCI-2389 was designed as a NEK2 inhibitor by virtual
screening, and successfully mitigated drug resistance in
bortezomib-resistant multiple myeloma (62).

Nucleic acid medicine. Several studies demonstrated that
NEK?2 inhibition using nucleic acids such as siRNA,
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Table 1. Inhibitory effect of never in mitosis gene A-related kinase 2 (NEK2) inhibitors in subcutaneous xenograft animal models.

Cancer type Cell line Animal Agent Dose, mg/kg Administration Ref
method and DDS
Breast MDA-MB-231 CB.17, SCID mouse TAI-1 20 iv. 2/dx28 d (66)
150 p.o. 2/dx28 d
Colorectal Colo-205 CB.17, SCID mouse TAI-1 7.5,22.5,50~>75 p.o. 2/dx28 d (66)
Liver Huh-7 CB.17, SCID mouse TAI-1 7.5,22.5, 50~75 p.o. 2/dx28 d (66)
Liver Huh-7 CB.17, SCID mouse TAI-95 1,2.5,10 p.o. 2/dx28 d (64)
Breast MDA-MB-231 CB.17, SCID mouse TAI-95 10, 25 p.o. 2/dx28 d (65)
Breast BT474 CB.17, SCID mouse TAI-95 10, 25, 50 p.o. 2/dx28 d (65)
Breast MCF7 Balb/c, nude mouse TAI-95 10, 25, 50 iv. 2/dx28 d (65)
Breast MDA-MB-231 Balb/c, nude mouse Compound 32 20 iv. 1/dx28 d (71)
150 p.o. 2/dx28 d
Breast MDA-MB-468 Balb/c, nude mouse INH1 50, 100 iv. Every other day x7 w
(25 cycles) (73)

Breast MDA-MB-468 Balb/c, nude mouse INH41 10, 50 ip. 3/wxT w (74)
Breast MDA-MB-468 Balb/c, nude mouse INH154 5,20 ip. 3/wx7 w (74)
i.s.: Local administration; i.p.: intraperitoneal; i.v.: intravenous; p.o.: oral; w: week; d: day; DDS: Drug Delivery System.
Table II. Inhibitory effect of nucleic acid medicine targeting never in mitosis gene A-related kinase 2 (NEK2) in xenograft animal models.
Cancer type Cell lines Animal Xenograft siRNA Conc. Administration Ref

for Nek2 Vol. method and DDS
Cholangiocarcinoma HuCCT1 Balb/c nude mouse Subcutaneous siRNA 20 uM, 100 ul i.s. Biocollagen 1/wx3d (22)
Breast MDA-  Balb/c nude mouse Subcutaneous siRNA 20 uM, 100 pl i.s. Biocollagen 1/wx3d (23)

MB-231

Breast MCF7  Balb/c nude mouse Subcutaneous siRNA 20 uM, 100 ul i.s. Biocollagen 1/wx3d (23)
Colorectal DLD1 Balb/c nude mouse Subcutaneous siRNA 20 uM, 100 pl i.s. Biocollagen 2wx3d (32)
Colorectal DLDI  Balb/c nude mouse Subcutaneous siRNA 50 uM, 100 pl i.s. Biocollagen 2/wx2w (32)

(CDDP) (4 mg/kg) ip. - (2/wx2 w)
Pancreas KLM1 Balb/c nude mouse Subcutaneous siRNA 50 uM, 100 pl i.s. Biocollagen 1/wx3d (36)
Cholangiocarcinoma  HuCCT1 Balb/c nude mouse Peritoneal siRNA 20 uM, 100 ul ip.  Liposome 1/wx3d (22)
Pancreas KLM1 Balb/c nude mouse Peritoneal siRNA 50 uM, 100 ul ip.  Liposome I/wx3d (36)
Pancreas KLM1 F344/njcl rat Liver metastasis siRNA 50 uM, 100 pl iwv.  Liposome 1/dx5d  (36)
Myeloma APR1 Nod-Rag/null mouse  Subcutaneous  Nek2 silenced is. - - (54)

cell using

shRNA
Prostate LNCAP Balb/c nude mouse Subcutaneous  Nek?2 silenced i.s. - - (42)

cell using

siRNA

i.s.: Local administration; i.p.: intraperitoneal; i.v.: itravenous; p.o.: oral; w: week; d: day; CDDP: cisplatin; DDS: drug-delivery system.

antisense and miRNA may be beneficial for cancer therapy
(34, 60, 77) (Table II). Nucleic acid medicine is positioned
to be a promising therapy. For instance, NEK2-targeting
siRNA reduced the viability and proliferation of several
cancers, including cholangiocarcinoma (22), breast (23),
colorectal (32), and pancreatic (36). miR-128 suppressed
NEK?2 expression in cancer cells and thereafter inhibited cell
proliferation and induced cell-cycle arrest (34).

Although siRNA is a beneficial tool for inhibiting the
expression of a specific gene through a drug delivery system,
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an in vivo delivery system is especially important for clinical
application. Mowa et al. reported that viral vectors such as
adenoviral vectors and retroviral vectors were good systems
for drug delivery of siRNA (78). However, viral vectors
carry a risk of severe side-effects in clinical use.

We used biocollagen and liposome as delivery carriers for
NEK?2 siRNA in a xenograft mouse model, such as
subcutaneous tumor, peritoneal dissemination and liver
metastasis (22, 23, 32, 36). Both delivery carriers were
efficient in the transfection rate and for the effect of NEK2
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siRNA in cancer cells (36). Therefore, biocollagen and
liposomes have advantages for clinical application as
delivery carriers for nucleic acid medicine, including siRNA.

In addition, we have focused on the venous port-catheter
system as another drug-delivery system for siRNA for liver
metastasis. The system has already been applied in the clinic,
and is effective as a drug delivery system for siRNA, because
anticancer drugs are administered directly into tumors (36).

Further investigations are required in terms of safety and
side-effects of the use of NEK2 siRNA. We consider it
possible that NEK2 siRNA will be a novel therapeutic
strategy for the treatment of cancer.

Future Perspectives

Several researchers have demonstrated that the suppression
of NEK2 results in inhibitory effects in many cancer types
both in vitro and in vivo. Current research strongly indicates
an advantage for NEK2-targeted cancer therapy. However,
several crucial problems remain to be resolved. For instance,
the signaling pathway of NEK2 in cancer may be partly
shared by normal cells. We did not identify this complication
related to NEK2 inhibition in several xenograft mouse
models. However, the side-effects in NEK2-targeting therapy
are difficult to predict completely. Further investigation of
the role of NEK2 in cancer cells is thus crucial to prevent
damage to normal cells. Taken together, these findings
suggest that NEK?2 is an effective target for cancer therapy
and has the potential to promote the regression of multiple
human malignancies.
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