
Abstract. Background: Canine prostate cancer represents a
spontaneous animal model for the human counterpart. Cells
with stem cell-like character are considered to play a major
role in therapeutic resistance and tumor relapse. Thus, the
identification of markers allowing for recognition and chara -
cteri zation of these cells is essential. Materials and Methods:
Expression of 12 stem cell marker genes in the canine
prostate cancer cell line CT1258 and spheroid cells gene -
rated from these was analyzed by quantitative real-time PCR.
In CT1258 and the generated spheroid cells, CD44 and
CD133 expression was analyzed by flow cytometry, as well
as proliferation and doxorubicin resistance. Results: Integrin
alpha-6 (ITGA6 ) expression and metabolic activity were
significantly up-regulated in CT1258-derived spheroid cells,
while doxorubicin resistance remained comparable. Con -
clusion: ITGA6 de-regulation and metabolic activity appear
to be characteristic of the generated spheres, indicating
potential intervention targets. 

Prostate cancer is, following lung cancer, considered to be the
second leading cause of cancer-related death in men in the
Western societies (1). Besides man, the dog is the only
domesticated mammalian species in which this malignancy

also occurs spontaneously (2, 3). In both species, a compa -
rable progression with local invasive growth, metastatic
behaviour and histopathological phenotype can be observed
(2, 4-6). Unlike the condition in men, the risk of prostate
cancer development in dogs is considered to be significantly
lower, with an estimated incidence of 0.2-0.6% (7, 8).
Regardless of this, the prognosis for canine prostate cancer is
poor as the disease is highly aggressive and mostly diagnosed
at a very late stage (9, 10). Akin to men, elderly canine
individuals are predominantly affected at an average age of
10 years (3, 5, 11). However, some differences in prostate
cancer of both species remain, such as different incidence,
response to androgen deprivation therapy and different
expression of diagnostic markers such as prostate-specific
antigen (PSA) (12, 13). Despite these differences, the dog is
considered to represent an appropriate natural com ple men tary
animal model for human prostate cancer, especially for late-
stage human prostatic carcinoma (2, 14-19). Consequently,
the evaluation of novel diagnostic and therapeutic regimens
provides benefit for both humans and dogs (15, 20). 

Cancer-related therapeutic failure after chemotherapeutic
regimens was lately suspected to be caused by a minor,
highly drug-resistant cell population with stem cell-like
character commonly referred to as cancer stem cells (CSCs).
These cells are assumed to play a major role in tumor relapse
and metastasis in advanced stages of the disease (21-24).
However, these sub-populations usually represent a rather
small percentage of the total tumor burden, constituting a
minor fraction of the cancer cells (25). 

Several stem cell markers have been described as being
expressed in these cells, allowing screening and isolation of
these sub-populations (26, 27). Despite the fact that some of
the genes for these markers are also expressed in non-
neoplastic cells, the expression of CD44 (28), prominin 1
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(CD133) (29), v-kit Hardy-Zuckerman 4 feline sarcoma viral
oncogene homolog (c-KIT) (30), CD34 (31), integrin alpha 6
(ITGA6) (32-34), v-myc myelocytomatosis viral oncogene
homolog (MYC) (35), Nanog homeobox (NANOG) (36, 37),
DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5) (38),
kruppel-like factor 4 (KLF4) (39), (sex determining region Y)-
box 2 (SOX2) (28), maternal embryonic leucine zipper kinase
(MELK) (40) and POU class 5 homeobox 1 (OCT4) (41) has
been widely considered as a potent tool to affirm the presence
of these cell sub-populations in different human cancer types
such as breast, haematopoietic, lung, brain and prostate cancer
(42). In human prostate cancer, selection of these cells was
achieved by sorting CD44 and CD133 double-positive prostate
cancer cells (43). As the proportion of these cells in the total
tumour cell population is low, their sorting and detection by
fluorescence-activated cell sorting can be challenging (43),
and thus cultivation-based enrichment strategies are employed
(21, 43-45). The possibility of isolating and handling these
cells allows for detailed characterization of the respective sub-
populations and consequently the development of strategies
aiming at a directed targeting. 

Considering the lack of therapeutic options in dogs, the
characterization of potential cancer cell populations with a stem

cell-like character in canine prostate cancer could be of
significant value for the development of therapeutic appro aches.
In previous studies, we showed that the pheno type of the canine
prostate adenocarcinoma cell line CT1258 provides a constantly
stable cell line model (46). In the present study, we attempted to
enrich potential cancer stem-like cells by serum-free cultivation,
investigate the expression levels of 12 stem cell marker genes
and characterise the doxo rubicin resistance. 

Materials and Methods

Adherent and suspension cell culture. The adherent canine prostate
adenocarcinoma cell line CT1258 (47) was cultivated in medium 199
(Gibco, Karlsruhe, Germany), supplemented with 10% Fetal Bovine
Serum (FBS) Superior (Biochrom AG, Berlin, Germany) and 2%
penicillin/streptomycin (Biochrom AG). The cells were incubated at
37˚C with 5% CO2. For the suspension culture, adherent cultivated
cells were isolated by trypsinization and washed with phosphate-
buffered saline (PBS). The cells were re-cultivated at a density of
10000 cells/ml in 100 cm2 dishes (TPP Techno Plastic Products AG,
Trasadingen, Switzerland) coated with 1% agarose. Serum-free
DMEM/F12 medium (Biochrom AG) was supplemented with 5 μg/ml
insulin (Sigma-Aldrich, Seelze, Germany), 2 mM L-glutamine (Sigma-
Aldrich), 2% B27 supple ment minus vitamin A (Life Technologies
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Table I. Primer pairs used in quantitative real-time PCR.

Gene Full gene name Forward primer (5’-3’) Reverse primer (5’-3’) Amplicon (bp)

CD34 CD34 molecule ACCAGAGCTATTCCCGCAAG TTTCTCCTGTAGGGCTCCAA 120
CD133 prominin 1 CTTTCTCATGGTCGGAGTTGG TGGAATAGTTTCCTGTTCTGGTAAG 135

v-kit Hardy-Zuckerman 4 feline AGAAACGTGAAGCGCGAGTA ACACAACTGGTACAGCTCGATGG 129
C-KIT sarcoma viral oncogene homolog
CD44 CD44 molecule AATGCTTCAGCTCCACCTG CGGTTAACGATGGTTATGGTAATT 92
ITGA6 integrin, alpha 6 TCAGACCCTTAACTGCAGCA CATAACCTCGAGCGCAGAA 132
OCT4 POU class 5 homeobox 1 CGAGGAGTCCCAAGACATCA AACACCTTCCCAAAGAGAACC 138
NANOG Nanog homeobox CTATAGAGGAGAGCACAGTGAAG GTTCGGATCTACTTTAGAGTGAGG 141
KLF4 Kruppel-like factor 4 CCACATTAATGAGGCAGCCA CTCCCGCCAGCGGTTATT 146
SOX2 (sex determining region Y)-box 2 GGAAACTTTTGTCGGAGACG CGGGGCCGGTATTTATAATC 103
MYC v-myc myelocytomatosis TCGGACTCTCTGCTCTCCTC TTCTTCCTCCGAGTCGCT 108

viral oncogene homolog
MELK maternal embryonic CCAAGGGTAACAAGGACTAC CTCCAAACATCTGCCTCTGA 112

leucine zipper kinase
DDX5 DEAD (Asp-Glu-Ala-Asp) AACTTCCCTGCAAATGTAATGGA AGTCTGTGCTACTCCAACCAT 123

box helicase 5
ACTB β-actin TCGCTGACAGGATGCAGAAG GTGGACAGTGAGGCCAGGAT 127

Table II. Antibodies used for flow cytometric analyses.

Monoclonal antibody Specificity Clone Marker identified Monoclonal isotype

Anti-canine CD44 FITC Dog YKIX337.8 CD44 Rat IgG2aκ FITC
PE anti-mouse CD133 Mouse/Dog 13A4 CD133 Rat IgG1κ PE

FITC: Fluorescein isothiocyanate; PE: phycoerythrin.



GmbH, Darmstadt, Germany), 20 ng/ml EGF (Biochrom AG) and 
20 ng/ml bFGF (Invitrogen, Darmstadt, Germany). 

Two different serum-free cultivation periods were chosen. Both
cultivation periods utilised two dishes, and cells were cultivated for
10 days (CT1258 S10d) and 15 days (CT1258 S15d). The medium
was changed under both incubation periods every three days. The
cells were incubated at 37˚C with 5% CO2 with manual shaking of
the dishes at least once every two days during the whole serum-free
cultivation period. The cultivations were performed three times
independently, providing three biological replicates for analyses. 

To monitor the formation of cell spheres, images were taken at
1, 5, 10 and 15 days of culture in suspension medium at 100-fold
magnification using a Leica DMI6000B microscope (Leica Mikro -
systeme Vertrieb GmbH, Wetzlar, Germany). 

At the end of the cultivation period, spheres in each dish from
both incubation periods were collected in a single sterile 15 ml tube
(Greiner bio-one GmbH, Frickenhausen, Germany) and centrifuged
for 5 min at 118 ×g. Subsequently, the spheres were washed with 1
ml of PBS and used for further analyses. 

RNA isolation and cDNA synthesis for quantitative real-time PCR.
The isolation of total RNA from adherent CT1258 cells and cell
spheroids S10d and S15d was carried out using RNeasy mini Kit
(Qiagen, Hilden, Germany). On-column DNase digestion was
performed for eliminating genomic DNA during this experiment.
cDNA synthesis was carried out using 500 ng of total RNA in 20
μl according to the manufacturer’s protocol for the QuantiTect
Reverse Transcription Kit (Qiagen).

Analysis of stem cell marker gene expression by qPCR. The specific
gene expression assays of selected markers described in Table I
were used to perform relative qPCR. Beta-actin (ACTB) was utilised
as endogenous control. The qPCR results were analysed using the
delta delta CT (ΔΔCT) method.

The qPCR reactions were carried out using the Eppendorf
Mastercycler® ep realplex real-time PCR system (Eppendorf, Ham -
burg, Germany) and QuantiTect SYBR green qPCR Kit (Qiagen).
In each reaction, 1 μl cDNA equivalent to 25 ng total RNA was
used in a final volume of 20 μl. The program of qPCR reactions was
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Figure 1. Sphere-formation of CT1258 cells in suspension in serum-free culture medium. CT1258 sphere-forming cells were imaged on the indi -
cated day of culture. Day 1: After trypsinization, a defined number of 105 CT1258 cells/ml was transferred in suspension medium. Day 5: Few
floating cells started to construct spheroids, the majority of cells were dead. Day 10: The dead cells were reduced compared to day 5 and the
number of spheres increased. Day 15: The volume of the formed spheres increased, while a low number of dead cells was recorded. 



performed according to the manufacturer’s protocol for the Quanti -
Tect SYBR green qPCR Kit (Qiagen). All samples were analysed
in triplicates including non-template and non-reverse transcriptase
controls for each reaction. 

The efficiency test for all analysed genes was used by applying
serial dilutions of standard DNA for 1:2 and 1:10, and all assay
efficiency were between 0.91 and 1.10.

As the expression of the majority of the analysed markers was
evaluated by us previously in adherent CT1258 cells, the non-enriched
CT1258 cell was selected as calibrator and was set a value of ‘1’ for
ΔΔCT analysis for all target genes referenced to the expression level.

Flow cytometric analyses of CD44 and CD133. For flow cytometric
analyses, the spheroid CT1258 cells were centrifuged at 118 ×g for
5 min. Subsequently, the pellet was dissociated by treatment with
Accutase Cell Dissociation Reagent (Life Technologies GmbH,
Frankfurt, Germany) for 5 min in order to obtain single-cell suspen -
sions for flow cytometric analyses. Adherent CT1258 cells cultiva -
ted under regular conditions (47) were used as reference for later
comparison with the generated CT1258 spheroids. After a washing
step with PBS, the adherent CT1258 cells were also treated with
Accutase Cell Dissociation Reagent as described above. 

All different CT1258 cell suspensions were adjusted to a total
number of 105 cells in 100 μl using an Auto T4 automated cell
counter (Nexcelom Bioscience, Washington, DC, USA). The
adherent CT1258 cells, as well as the spheroids, were incubated for
30 min at 4˚C with either monoclonal anti-CD44-FITC (eBio -
science, Frankfurt, Germany), or with anti-CD133-PE (eBioscience)

(Table II) antibodies. The samples were analysed via flow cytometry
as described previously (46). 

Characterization of metabolic activity and doxorubicin resistance.
Adherent CT1258 cells and spheroids were harvested and
dissociated to single-cell suspensions as described above. Cell
viability was determined by conventional trypan blue staining.
For metabolic studies, 22500 cells (0.5 ml medium/well) were
plated in triplicate in a 24-well plate. Cell counts were determined
after 72 h with a haemocytometer. At the same time, 5000 cells per
well were plated in triplicate in 100 μl in 96-well plates. Metabolic
activity was analysed after 72 h using tetrazolium compound WST-
1 reagent (Roche, Mannheim, Germany). 

The doxorubicin resistance of CT1258 spheroid cells was analy sed
by cell count and WST-1 cell proliferation assay. Cells were pla ted as
described above, 22500 cells/well in a 24-well plate in 0.5 ml medium,
and treated with 50 nM and 100 nM doxorubicin. Cell counts were
determined after 72 h by trypan blue staining with a haemo cyto meter.
In 96-well plates, 5000 cells/well were plated in 100 μl medium with
0 nM, 10 nM, 50 nM, 100 nM, 150 nM and 200 nM doxorubicin.
Each concentration was performed in tripli cate. Cell metabolic activity
was analysed after 72 h using tetrazo   lium compound WST-1 reagent.
A complete culture medium 199 was used in the experiments.

Statistical analysis. Results of each experiment were expressed as
the mean±standard deviation. Significant differences were calculated
using Student’s t-test, where a p-value of less than 0.05 was
considered to be statistically significant. 
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Figure 2. Relative expression of selected markers in CT1258 S10d and S15d spheroid cells compared to adherent CT1258 cells. Quantitative real-
time PCR analyses of the expression of 12 selected stem cell markers in spheroid compared with adherent CT1258 cells. CT1258: Adherent CT1258
cells were used as the calibrator for the spheroid cells. CT1258 S10d: Spheroid cells cultivated for 10 days. CT1258 S15d: Spheroid cells cultivated
for 15 days. *p<0.05; **p<0.01; ***p<0.001. 



Results 

CT1258 cell sphere cultivation. At the beginning of culti -
vation, a significant number of non-vital cells was observed.
Viable cells growing in floating spheres began to arise after
a cultivation period of five days. The formation of new
floating spheres increased until day 10. Thereafter, the num -
ber of formed spheres stayed stable until day 15 (Figure 1).
The formed spheres showed tight cell-cell adherence and
were difficult to separate into a single-cell suspension. The
images of forming spheres were taken consecutively at 100-
fold magnification at days 1, 5, 10 and 15 (Figure 1).

Expression of stem cell marker genes in CT1258 spheroid
cells. The qPCR of spheroid and adherent CT1258 cells
showed in general a comparable stem cell marker expression
pattern to our previous analyses of adherent CT1258 cells
(46) (Figure 2). 

The expression of CD133, c-KIT, CD34 and OCT4 was
undetectable in analyzed CT1258 spheroid cells after 40
cycles. CD44 was shown to be highly expressed in S10d
(p=0.9684) and S15d (p=0.9668) cells. MYC was shown to
be down-regulated in S10d (p=0.0001) and S15d (p=0.0006)
cells, when compared to the calibrator CT1258 cell line.
MELK was shown to be slightly increased in S10d
(p=0.3024) and down-regulated in S15d (p=0.0061) compa -
red to the calibrator. ITGA6 was found to be strongly up-
regulated in S10d (p=0.0013) and S15d (p=0.0004) compa -
red to the calibrator. DDX5 showed a decreased expression in
S10d (p=0.0064) and S15d (p=0.0002) compared to the
calibrator. KLF4 expression was decreased in S10d
(p=0.0019) and S15d (p=0.0001) compared to the calibrator.
NANOG expression was also shown to be decreased in S10d
(p=0.0001) while being similar in S15d (p=0.8760), compa -
red to the calibrator. SOX2 was down-regulated in S10d
(p=0.0099) and S15d (p=0.0000) compared to the calibrator. 
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Figure 3. Flow cytometric analyses of adherent and spheroid CT1258 cells. Monoclonal antibodies against mouse/dog CD44 and CD133 labeled with
Fluorescein isothiocyanate (FITC) and Phycoerythrin (PE) fluorophore substances were used. The representative histograms show the analyzed cell
lines stained with CD44 and CD133 antibodies (black lines) compared to the corresponding isotype controls (gray lines). The geometric fluorescence
intensities (gMFI) are shown for CD133 PE staining. 



Flow cytometric analyses of CD44 and CD133. In the
adherent CT1258 and the generated spheroid cells, the flow
cytometric analyses showed strong expression of CD44, with
positivity above 99% cells for CD44. The analyses of CD133
revealed a weak signal in adherent and generated spheroid
CT1258 cells compared to the corresponding isotype controls
(Figure 3). 

For better comparability of the flow cytometric data,
normalized geometric mean fluorescent intensities (gMFIs) of
the specific CD133 staining were calculated by division of the
gMFI of CD133-labled cells by the gMFI of the respective
isotype control. The normalisation of the CD133 staining led
to low gMFIs for adherent CT1258 cells (1.08±0.07), while
the normalized gMFI slightly increased for S10d cells
(1.09±0.11) and slightly decreased in S15d cells (0.95±0.07). 

Nonetheless, the flow cytometric data for CD133 and
CD44 showed no distinct double-positive subpopulations in
spheroid cells. 

Characterization of metabolic activity and doxorubicin
resistance. The doxorubicin resistance of adherent and sphe -
roid CT1258 cells was analyzed by incubation with different
concentrations of doxorubicin for 72 h (Figure 4a-c). 

To interpret the doxorubicin resistance data of the WST-1
assay, values are shown as the percentage of metabolic acti -
vity, normalized to that of untreated cells. Compared to
untreated adherent CT1258 cells, the metabolic activity of
doxorubicin-treated CT1258 cells decreased, starting at 150
nM (Figure 4a). In CT1258 S10d cells, compared to
untreated S10d cells, the metabolic activity also apparently
decreased to a similar level but at 50 nM (Figure 4a). Like -
wise, cell count analyses also showed a significant decrease
at 50 nM in S10d cells (Figure 4c). In CT1258 S15d cells,
metabolic activity significantly decreased starting at 100 nM
(Figure 4a). Furthermore, cell count analyses showed that
CT1258 S15d cells display a similar value as adherent
CT1258 cells at 50 nM and 100 nM (Figure 4c ). 
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Figure 4. Cell proliferation and doxorubicin resistance analyses of adherent and spheroid CT1258 cells. a: Doxorubicin resistance analyses of
adherent and spheroid CT1258 cells. Results were calculated by dividing the absorbance value of doxorubicin-treated cells by that of untreated
adherent cells and spheroid cells respectively. Data shown are the relative mean±SD of metabolically active cells (%) (n=3). b: The metabolic
activity of adherent and spheroid CT1258 cells. Data shown are the mean absorbance value±SD (n=3). c: The data are the cell counts of adherent
and spheroid cells untreated as well as treated with 50 nM and 100 nM doxorubicin (n=3). d: Comparison of cell proliferation and metabolic
activity in untreated cells. Cell proliferation is shown as the relative fold change of cell counts (spheroid vs. adherent cells); metabolic activity was
determined by the WST-1 assay. Data shown are the relative fold change of absorbance value (spheroid vs. adherent cells)±SD (n=3). *p<0.05;
**p<0.01; ***p<0.001. Cells were incubated for 72 h in all experiments.



Interestingly, according to the raw absorbance value, the
metabolic activities of CT1258 spheroid cells were remark -
ably higher when compared to their adherent counter parts,
untreated or doxorubicin-treated cells (Figure 4b and d ). In
untreated cells, cell counts of adherent cell and spheroid cells
did not show any major differences. However, the metabolic
acti vi ties of CT1258 S10d and S15d cells were more than 5-
fold higher than that of adherent CT1258 cells (Figure 4d).
Doxo ru bicin-treated CT1258 spheroid cells also showed
signifi cantly higher metabolic activities than the CT1258
adherent cells. Furthermore, starting at 50 nM, CT1258 S15d
cells displayed a significant higher metabolic activity compa -
red to CT1258 S10d cells (Figure 4b). 

Discussion

CSCs are increasingly being the center of attention in cancer
research due to their suspected key role in tumor progression,
meta stasis, resistance to therapeutics and recurrence of
cancer (21, 22). A development of therapeutic strategies
allowing for selective targeting of these cells would be of
con si derable value, especially in cases where conventional
therapeutic options are limited. 

In recent years, several research groups have reported
isolation of CSCs from prostate cancer (43, 48-50). Com -
monly, CSCs were identified and isolated using three
methods: sorting of specific cell side populations, activated
cell sorting based on specific surface markers, and sphere-
forming culture (48). These initial sphere generation steps
are often followed by verification of tumor-forming capa city
in vivo. Yamamoto et al. generated spheres from human
benign prostatic hyperplasia cells (BPH) in serum-free medi -
um. In their evaluation of the generated sphere-forming cells,
flow cytometric analyses showed that CD49f (ITGA6)
exhibited a stronger marker character in compa rison to CD44
and CD133 (34). In contrast, Fan et al. were not able to
gene rate spheroids from the human prostate cancer cell line
LNCaP (50). However, CD44 and CD133 are described to
characterise putative CSCs in different canine tumour models
(51), as well as human prostate cancer (43, 52). Additionally,
further markers such as C-KIT, CD34, DDX5 and MELK
were used as single markers or in a marker panel in combi -
nation with CD44 and CD133 to identify putative CSC
populations (53-60). However, due to the different materials
and methods used in these studies, as well as the hetero -
geneous results, it was still not possible to unify and define
a specific biomarker set for prostate CSCs. Consequently the
question can be posed if a uniform marker panel allowing for
reliable detection of these cells even exists.

In the present study, a conventional suspension culture
method was used to stimulate the formation of spheres from
the canine prostate adenocarcinoma cell line CT1258. The
results showed that CT1258 cells form spheres when grown

in serum-free media supplemented with growth factors.
During the first five days, high numbers of non-vital cells
were observed, suggesting that serum-free conditions could
have advantages for specific CT1258 cell clone selection and
enrichment. The number of generated spheres increased
during the first 10 days of cultivation. Between the 10th and
15th day, the diameter of the spheroids increased. As men -
tioned, human prostate cancer cell lines have different
abilities for generating spheres independent of their cell line-
specific nature and metastatic potential (48, 50, 61).
Consequently, sphere-forming ability per se is likely not to
be sufficient to fully characterize and identify potential can -
cer cells with stem cell-like character. Thus, the combi nation
of sphere-forming capacity and evaluation of stem cell mar -
ker expression at the gene and protein levels might help to
identify and selectively enrich potential subpopulations with
stem cell-like character in culture. 

In general, several stem cell markers in different panel
combinations are currently used to isolate potential CSCs. As
previously described, the dual staining of CD44 and CD133 is
commonly used to characterize potential CSCs in different
types of cancer (43, 51, 62). In human prostatic lesions, small
numbers of CD133+ cells of up to 1% were identified (43,
62). In the present study, flow cytometric analyses showed
that a high number of CD44+ cells were detected in the sphe -
res formed after 10 and 15 days of cultivation in serum-free
medium. While CD44 was strongly expressed, no distinct
expression of CD133 was detected within the spheres formed
after both these cultivation periods. These results indicate that
the combination of the surface markers CD44 and CD133 for
CT1258 cells is not suitable for the definition of subpopu la -
tions with stem cell-like characteristics.

The qPCR analyses showed that c-KIT, CD133, CD34 and
OCT4 were not detectable in CT1258 S10d and S15d cells,
nor in the adherent CT1258 cells cultivated under regular
conditions as previously described by us (46). In Man, these
markers were reported to be significantly expressed in pro -
state cancer and partially in the prostate cancer-derived bone
metastatic cell line PC-3 (63, 64). 

DDX5 and MELK are considered stem cell marker genes
and also prostate cancer marker candidate genes, as both
were reported to be overexpressed in the prostate cancer cell
lines PC-3 and LNCaP (56, 57, 65, 66). In the current study,
expression of DDX5 and MELK did not differ between the
spheroid and adherent CT1258 cells.

The transcription factor genes SOX2, KLF4, OCT4 and
NANOG were described to be involved in the induction of
pluripotency and the maintenance of stem cells in their
undifferentiated state (36, 56, 67). Furthermore, the expres sion
of these genes was suggested to correlate with the degree of
malignancy in human prostate cancer (68, 69). The results of
our study showed that these transcription factor genes were
weakly expressed in serum-free cultured spheroid cells, leading
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to the conclusion that these genes are not predominantly
involved in the formation of spheres from CT1258 cells. 

MYC is known to be overexpressed in human prostate cancer
(70, 71). In contrast to these findings, our qPCR analyses
showed down-regulation of MYC in both CT1258 spheroid
cultures when compared to adherent CT1258 cells. Concerning
the aggressive character of the cell line CT1258 in vivo, this
result was unexpected, indicating that alternative mechanisms
leading to cell proliferation appear to be active in CT1258 (72). 

The influence of ITGA6 on the functions of potential CSCs
was clearly shown by enhancing their efficiency in tu mouri -
genesis (69, 73, 74). In human prostate cancer, ITGA6 was
described as keeping CSCs undifferentiated and increasing the
ability of the potential CSCs to migrate into other organs such
as the neural system or bones (73-76). ITGA6 was found to
be highly increased in sphere-forming BPH cells to up to 98%
in comparison to freshly isolated BPH cells in which
5.6±3.1% ITGA6-positive cells were detected (34). Similarly,
our qPCR analyses demonstrated that ITGA6 expression was
significantly increased in CT1258 S10d and S15d spheroid
cells compared to adherent CT1258 cells. As mentioned
before, flow cytometric analyses of human prostate cancer
generated sphere-forming cells showed that ITGA6 (CD49f)
revealed a stronger marker chara cter in comparison to CD44
and CD133 (34) for poten tial CSC selection. These results in
human prostate cancer and the spheroid qPCR expression
result of our study suggest that ITGA6 could be a potential
indicator for the existence of a specific cell subpopulation in
selectively cultivated CT1258 sphere subclones.

As described, the comparative expression analyses revealed
that no up-regulation of CD44 and CD133 was observed at the
gene expression level in the CT1258 spheres. Thus, as flow
cytometric data verified these findings, it can be stated that
'conventional' CSC enrichment did not take place in CT1258
cells. This fact does not imply that in general CT1258 lacks a
potential subpopulation of cells with stem cell-like character.
These findings indicate that apparently the 'typical'
CD44/CD133 double-positive pattern is not chara cteristic of
CT1258 cells, as has been also reported in human prostate
cancer stem cell studies (34, 49). However, potential specific
cell populations with stem cell-like chara cter in CT1258 might
be characterized by an individual characteristic stem cell
marker panel with ITGA6 as the pre do minant marker. In
summary, the results and the compa rison to the human
counterpart again raises the question if in general a 'stable'
marker set actually exists for CSCs, or if stem cell marker
expression varies individually as the presentation of tumors
does. As mentioned above, in our study ITGA6 appears to
characterize an enriched specific sub-population of CT1258
cells. Consequently, besides the evaluation of the tumor-
forming potential of the generated spheres in vivo, it is
tempting to further characterize the role of ITGA6 in CT1258
cells and the enriched CT1258 subclones. 

In general, cells with stem-like properties are discussed as
being more resistant to conventional chemotherapy than the
bulk of overall cancer cell populations (21, 61, 77).
Accordingly, this may also be the main reason for cancer
recurrence. Metabolic alteration is considered a hallmark of
cancer cells and an important factor contributing to cancer
cell survival (78). CSCs were reported to have special meta -
bolic features that can distinguish them from other cancer
cells (79). Cancer cells generally increase their glycolysis
and CSCs are discussed as being characterized by an even
higher glycolytic activity (78, 80). In the present study, we
analyzed the metabolic activity and doxorubicin-resistant
capability of the generated spheres. However, the spheroid
cells did not show a significantly higher resistance to
doxoru bicin. Interes tingly, the metabolic activities of sphe -
roid cells were re markably higher when compared to
adherent CT1258 cells. In addition, CT1258 S15d cells
displayed higher metabolic activ i ties compared to S10d cells.
These observa tions suggest that during cultivation, certain
popu lations are enriched. 

In summary, the present study demonstrated that CT1258
cells can form spheres in suspension in a serum-free culture
me dium. Furthermore, ITGA6 expression and elevated meta -
bolic activity appear to characterize a specific cell subpopu -
lation which potentially bears the characteristics described
for cancer cells with a stem cell-like character. However,
these results must be complemented in vivo by evaluating the
potential to generate tumours by s.c. injection of the spheres.
If successful, analysis comparative to our previously establi -
shed CT1258 in vivo model can potentially provide a stable
model for further studies characterizing the sub-popu lations.
Furthermore, our results indicate that as MYC and ITGA6 are
significantly de-regulated in the gene rated spheres, these
genes could consequently play a major role in CT1258 cell
line spheroid formation and biology. Taking into account the
lack of therapeutic options for dogs and the unique model
character for human neoplasia, further characterization of the
in vitro model herein described using enriched cells could be
of major value for both prostate cancer-affected species. 
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