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Abstract. Aim: to identify biological interactions between
proliferating fibroblasts and HeLa cells in vitro. Materials and
Methods: Fibroblasts were isolated from both normal and
tumour human tissues. Coverslip co-cultures of HeLa and
fibroblasts in various ratios with medium replacement every 48
h were studied using fixed cell staining with dyes such as
Giemsa and silver staining, with immunochemistry for Ki-67
and E-cadherin, with dihydrofolate reductase (DHFR) enzyme
reaction, as well as live cell staining for non-specific esterases
and lipids. Other techniques included carmine cell labeling,
autoradiography and apoptosis assessment. Results: Under
conditions of feeding and cell: cell ratios allowing parallel
growth of human fibroblasts and HeLa cells, co-cultured for up
to 20 days, a series of phenomena occur consecutively:
profound affinity between the two cell types and exchange of
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small molecules; encircling of the HeLa colonies by the
fibroblasts and enhanced growth of both cell types at their
contact areas; expression of carbonic anhydrase in both cell
types and high expression of non-specific esterases and
cytoplasmic argyrophilia in the surrounding fibroblasts; intense
production and secretion of lipid droplets by the surrounding
fibroblasts; development of a complex net of argyrophilic
projections of the fibroblasts; E-cadherin expression in the
HelLa cells; from the 10th day onwards, an increasing
detachment of batches of HeLa cells at the peripheries of
colonies and appearance of areas with many multi-nucleated
and apoptotic HeLa cells, and small HeLa fragments, from the
17th day, appearance of fibroblasts blocked at the G,-M phase.
Co-cultures at approximately 17-20 days display a cell-cell
fight with foci of (a) sparse growth of both cell types, (b)
overgrowth of the fibroblasts and (c) regrowth of HeLa in small
colonies. These results indicate that during their interaction
with HeLa cells in vitro, proliferating fibroblasts can be
activated against HeLa. This type of activation is not observed
if fibroblast proliferation is blocked by contact inhibition of
growth at confluency, or by omitting replacement of the
nutrient medium. Conclusion: The present observations show
that: (a) interaction between proliferating fibroblasts and HeLa
cells in vitro drastically influences each other’s protein
expression, growth pattern, chromatin features and survival;
(b) these functions depend on the fibroblast/HeLa ratio, cell
topology (cell-cell contact and the architectural pattern
developed during co-culture) and frequent medium change, as
prerequisites for fibroblast proliferation; (c) this co-culture
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model is useful in the study of the complex processes within
the tumour microenvironment, as well as the in vitro
reproduction and display of several phenomena conventionally
seen in tumour cytological sections, such as desmoplasia,
apoptosis, nuclear abnormalities; and (d) overgrown
fibroblasts adhering to the boundaries of HeLa colonies
produce and secrete lipid droplets.

Before the development of its own environment, at a very initial
stage of its existence, a tumour may start from a single cell,
which, as a result of an intrinsic carcinogenic process, has
undergone specific genome alterations and creates a small
colony by successive abnormal and unrestrained divisions (1).
This rampant behaviour is challenged by the homeostatic/
immune surveillance mechanisms of the organism and, if it is
successfully confronted, the malignant cells are eradicated. If
not, the small bundle of malignant cells gives rise to a tumour,
which per se establishes its own microenvironment and "tumour
homeostasis". Escape of cancer cells from the homeostatic
immune control, one of the "hallmarks of cancer" (2, 3), has
long since been suggested as an initial phenomenon in cancer
development (4, 5). As these malignant cells mingle with other
cell types, such as normal fibroblasts, that grow in parallel with
them to form part of the tumour microenvironment (TME), the
study of interactions between cancer cells and fibroblasts, as
well as the role of fibroblasts in tumour progression have
attracted a great interest (6-12).

‘Within the tumour stroma microenvironment, fibroblast-like
cells comprise a large variety of cells with a predominant
spindle-shaped in vitro morphology (pericytes, endothelial
cells, “angiogenic cells”, capillary tube cells, myofibroblasts,
adipocytes). A particular type of stromal fibroblast, the cancer-
associated or tumour-associated fibroblasts (CAFs or TAFs
respectively) or myofibroblast within the tumour, has been
shown to affect extracellular matrix (ECM) remodeling and
activation of various mechanisms for supporting cancer cell
growth (11, 13-16), and eventually invasion and metastasis
(13, 16, 17-21).

The growth or invasion-supportive activity of CAFs has
been associated with altered, induced or suppressed expression
of a large variety of genes in both cancer cells and CAFs (17,
21-41). These activities have been described in co-cultures and
histological samples containing adjacent cancer cells and
stromal fibroblasts. The proportion of CAFs expressing each
of these activities may differ in different samples or in
different areas of the tumour. Thus, there is reasonable
evidence pointing to the existence of multiple subpopulations
of stromal fibroblasts (including CAFs) displaying
heterogeneity regarding their gene expression and functions
(27, 36, 42-49).

The growth of stromal fibroblasts within a tumour and,
mostly, at its periphery (42, 50), as well as the creation of a
unique ECM extracellular matrix (9, 51), as a response to
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cancer initiation and growth, has been termed reactive stroma,
stromagenesis, fibrovascular stroma, stromal reaction,
fibromyxoid reaction, fibrosis, desmoplastic reaction, and the
phenomenon ‘desmoplasia’ (from the Greek for creation of
chains) (9, 14, 42, 52-55). Desmoplasia has been suggested as
a host defense against neoplasia (6, 46, 52, 56-60), and
histologically observed desmoplasia has often been associated
with aggressive tumours and poor prognosis (49, 61-64).

Since desmoplasia differs widely by tumour type (49, 64,
65) and since it may have opposing or supporting effects in
different areas of the same tumour (39, 48, 66-73), a
definitive description of its role in neoplasia has not been
given. It remains unclear whether desmoplasia is a
homeostatic response to cancer, or is caused by the cancer
cells themselves (74). An interplay between desmoplasia, the
inflammatory process and cancer has also been the focus of
continuing studies indicating the possibility that desmoplasia
may represent a post-inflammatory/pre-neoplastic condition
(23,75-77).

In tumour biopsy sections, CAFs can be seen around
tumour cell nests, at the tumour periphery (29, 53, 78-81), but
mostly at the invasive front (48, 82-84). Therefore, there is
adequate evidence to show that heterogeneous distribution of
stroma exists in a tumour’s microenvironment (29, 65, 68, 85),
contributing further to cancer heterogeneity.

The identification of CAFs in most studies has been based
mainly on the expression of alpha smooth muscle actin (o.-
SMA), but also on fibroblast-specific protein 1 (FSP-1),
vimentin or desmin (25, 68, 86, 87). A comprehensive
description and definition of CAFs has been suggested that
should also include the study of several ultrastructural features
(88, 89) and gene-expression profiles (37, 90, 91). Thus, the
definition of CAFs through a single marker may be inaccurate
due to their high heterogeneity within the tumour stroma (53,
68, 70, 82, 92).

Although CAFs do not display somatic mutations,
epigenetic changes have been observed, and are thought to
regulate part of the gene expression of CAFs (93, 94).

The origin of CAFs remains unclear (45) since there are
indications that they may be derived from resident fibroblasts,
pericytes, mesenchymal stem cells, endothelial cells,
carcinoma cells, epithelial cells, smooth muscle cells, bone
marrow-derived cells, fibrocytes or adipocytes (53, 95-99). It
should be noted that fibroblasts stimulated by various
cytokines produced by cancer cells [such as transforming
growth factor o (TGFa), transforming growth factor [}
(TGFp), epidermal growth factor (EGF),  epidermal growth
factor (EGF), platelet-derived growth factor (PDGF), tumour
necrosis factor alpha, Interleukin 1 (IL-1), IL-6, IL-8] are
transformed to myofibroblasts (90, 100, 101) located close to
cancer cells (101). This effect of cancer cells on fibroblasts
has also been suggested to be responsible for the desmoplastic
reaction in tumours (74, 101).
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Terms, such as multipotent mesenchymal stem cells, are
extensively used in the literature to declare heterogeneous
populations of fibroblast-like cells isolated from various
tissues. These cells exert a variety of effects based mainly on
their "flexibility" in expressing certain genes, thus facilitating
specific final phenomena, including transdifferentiation (102-
104). Remarkably, CAFs, myofibroblasts, mesenchymal stem
cells and fibroblasts have more similarities than previously
recognised (98, 105-109). These include non-tumourigenicity
and no or very limited acquisition of chromosomal aberrations
(110); immunoregulative or immunosuppressive properties
(75, 111-113); tissue-repair mechanisms, including dermis,
tendon and bone cartilage (114, 115); adaptive nature and
potential for differentiation (103, 104, 116-118); affinity for
cancer cells both in vitro and in vivo (119, 120-122); and
antiproliferative effects (123, 124).

The ratio of CAFs to non-CAFs varies not only by tumour
type but also within the same type of tumour in different
patients (1, 11, 21, 47, 68, 74, 82, 87, 125-133), therefore
justifying the question of the role of non-CAFs in the
desmoplastic reaction (46, 51, 72, 131, 133). Only a small
fraction of fibroblasts in breast cancer is converted into
myofibroblasts (127, 128). In addition, fibroblasts and
mesenchymal stromal cells of various origins have
considerable in vitro heterogeneity regarding morphology (9,
43, 134, 135), response to host-tumour cell-cell interactions
(82), phenotype (9, 103, 136, 137), gene-expression profile (7,
9, 27, 46, 135, 138) and immunomodulatory capacity (138,
139). Fibroblasts may remarkably exhibit heterogeneous
properties even within the same organ (46, 139-141).
Furthermore, stromal fibroblasts from different locations
within a tumour may have different properties (39, 48, 68-72,
82, 91). CAFs in endometrial tumour biopsy sections from
different patients also exhibit wide variations in the expression
of mesenchymal cell markers, growth factors, cell cycle
regulators, steroid hormones and angiogenesis factors (78).

Normal fibroblasts in vitro are typically senescent spindle-
shaped cells exhibiting high mobility, contact inhibition of
growth, chromosomal stability in culture (134, 142-145) and
absence of malignant cellular phenotypes (15). They have
been shown to be prone to alterations of their gene-expression
profile during their involvement in embryonic development
(53, 146), mammary gland formation and breast
morphogenesis (25, 53, 147, 148), endometrial cellular
physiological processes (149), prostate development (150) and
wound healing and tissue repair (86, 87, 115, 136, 151).
During these processes, normal fibroblasts are converted into
myofibroblasts (10, 74, 86, 149, 152-154) that exhibit elevated
levels of collagen, a-SMA and the ED-A splice variant of
fibronectin (25, 87) and of a number of other proteins (150,
155); or transdifferentiate into various final cell types (104,
156). These alterations cease to exist after normal functions
have been established or regained and myofibroblasts

disappear by apoptosis (86, 149, 152, 157). Thus, in a normal
healthy organism, fibroblasts act as infrastructural elements,
as regulators of organ development and as guardian of tissue
architecture and homeostasis (74, 123, 150, 152, 158-161). If
fibroblasts maintain these fundamental properties within the
desmoplastic reaction, it seems reasonable to consider that
their presence and growth are involved in the defense
mechanism against cancer (46, 51-54, 58, 59, 162). However,
there is evidence suggesting that in the tumour
microenvironment, at least some of the stromal fibroblasts
undertake a supportive role in tumour growth and metastasis
(10, 12, 13, 16, 33, 37, 39, 43, 47, 53, 72, 90, 96, 152, 163-
178). Notably, a-SMA-positive myofibroblasts were shown to
be supportive of tumour invasion and angiogenesis (39, 72,
179), while a-SMA-negative fibroblasts were inhibitory.

Although there are extensive experimental indications of a
tumour-suppressing (inhibitory) action of certain fibroblasts
(including mesenchymal stem cells) in vitro (6, 10, 12, 58,
124,161, 164, 180-230) or in vivo (58-60, 122, 123, 189, 206,
225,228, 231-243) (excluding fibroblasts with specific gene
manipulations), the mechanisms involved and the final
outcome of suppressive effects are still obscure.

It should also be mentioned that the regulation of
differentiation and proliferation of cancer cells towards more
physiological histological patterns, as well as the reversion of
the malignant phenotype by normal fibroblasts, has been
described in several studies (147, 180, 206, 244-249).
Regulatory effects on cancer progression have also been
ascribed to stromal endothelial cells (250).

The above discussion underlines the meaning of ‘fibroblast
plasticity’ (92). However, the precise conditions under which
fibroblasts, as a highly heterogeneous compartment of a tumour,
may become supportive, inhibitive or catastrophic for tumour
cell growth remain unknown (6, 7,9, 19,42, 92,206, 227, 251).

It is certain that fibroblasts should be able to replicate in
order to accept signals for the modulation of their own gene
expression during S phase, or produce signals for the
modulation of genes in epithelial cancer cells. Proliferating
fibroblasts do not show o-SMA expression and elevated
collagen synthesis, while cells expressing a-SMA express
high levels of types I and III collagen mRNA (252).
Furthermore, a few studies have stressed the importance of
feeding (119, 186, 248, 253) as a means of maintaining
fibroblasts in a proliferative state, particularly during their co-
culture with cancer cells.

Thus, in continuation of our previous experiments (6, 119,
134, 186) and on the same theoretical basis as previously
defined (6, 9), the interactions between Hela cells and
proliferating fibroblasts were studied aiming to describe in
detail the influence of one cell type on the behaviour, growth
pattern and survival of the other, by applying conventional and
specific staining [non-specific esterases, lipid, Ki-67,
E-cadherin, dihydrofolate reductase (DHFR), silver staining].
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Materials and Methods

Cell lines. Eleven finite stromal fibroblastic cell lines (Table I) were
used and are referred to as SF or fibroblasts. Of these, seven have
previously been described (134, 142) and four (KA-BC, KR-BC, LA-
BC and TONS-57) were developed more recently. Fibroblasts were
isolated as previously described (134, 142) and were routinely
maintained in McCoy’s 5A (Flow Laboratories Inc., Rockville, MD,
USA) medium supplemented with 10% fetal bovine serum (Flow
Laboratories Inc., Rockville, MD, USA), 105 TU/L penicillin, 105 pg/L
streptomycin and 2 mg/L amphotericin B, at 37°C and 5% CO,. The
same medium was used in all cell co-culture experiments. All cells
were free of bacterial, yeast, fungal and mycoplasma contaminations
as tested by 3H-thymidine labeling and autoradiography (254, 255),
and mycoplasma antibody assay (256). Cells were not sourced from
specimens from patients with HIV or hepatitis. Tissue samples were
used after hospital’s approval and patient’s consent.

All SFs used had replication times of 50-56 h, a chromosomal
number of 46 and chromosomal abnormalities including aneuploidy
were present in fewer than 4% of the examined metaphases with no
persistent chromosomal changes. Their plating efficiencies were
very low, requiring a minimum of 1x103 to 2x103 cells/cm? to
produce a monolayer.

The HeLa cell line used was produced by cell cloning (257) and had
a replication time of 16 h, plating efficiency of 97% and chromosome
numbers ranging from 52-88 with ~6% hyperpolyploid cells.

Cell-to-cell interactions in vitro. The basic procedures of studying
cell-to-cell interactions in vitro have been described elsewhere (134,
142, 186). Since the purpose of the present study was to observe cell
interactions for as long as possible, HeLa cells were plated at a
density of 5 to 6 cells per 1x1 cm? glass coverslip contained in a 32
mm diameter plastic petri dish (Lux, Miles Scientific, Naperville, IL,
USA). After 2 to 3 days, colonies of 8-16 HeLa cells were produced
and, from that time point, the fibroblasts were added suspended in
replacement medium at the desired density. The medium was then
changed every second day. Under these conditions, co-cultures were
studied for up to 20 days. After every 2 days of co-culture, coverslip-
attached cells were washed (x3) in physiological saline and fixed in
methanol or 5% paraformaldehyde before staining.

Giemsa staining. Methanol-fixed cells were stained in freshly-prepared
Giemsa solution in a buffer prepared by mixing 3 ml 0.1 M citric acid,
8 ml 0.2 M disodium hydrogen phosphate solutions and 80 ml distilled
water and adjusting to pH 6.8. Three milliliters of methanol and 6 ml
of Giemsa (Gurr R66; BDH Laboratory Supplies, Poole, UK) were
then added and the solution was filtered before use. Cells were stained
for 20 min, washed in distilled water, in acetone and xylene twice
each, and mounted in Canada balsam or DPX (Sigma-Aldrich
Biotechnology, St. Louis, MO, USA). Giemsa staining and cell
morphology allowed HeLa cells to be differentiated from fibroblasts.
HeLa nuclei were pleomorphic and highly hyperchromatic, staining
profoundly dark blue with even darker nucleoli and blue cytoplasm,
while fibroblast nuclei stained light red-pink with blue nucleoli and
very light blue cytoplasm. HeLa cells had an epithelial polygonal
morphology, with a nuclear:cytoplasmic ratio of 1:2 to 1:3 and nuclei
with 1 to 5 nucleoli. Fibroblasts had a spindle-like morphology, with
a flat ellipsoidal nucleus with 1 to 3 nucleoli. They often developed
very long projections, and their cytoplasm spread out on glass or
plastic surfaces. The nucleus:cytoplasm ratio ranged from 1:5 to 1:14.
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Table 1. Finite human fibroblastic cell lines (SF) used in the present
study.

Cell line designation Site of specimen derivation

AK Tracheitis

G-EP CaM - normal breast epidermis
G-L CaM - metastatic lymph node
KA-BC CaM - primary tumour
KR-BC CaM - primary tumour
LA-BC CaM - primary tumour
PG-M Chronic mastitis primary lesion
PL-BC CaM - primary tumour
SE-L CaM - metastatic lymph node
TONS-F Tonsillitis

TONS-57 Tonsillitis

CaM: Breast adenocarcinoma with metastases.

Under the microscope, a light green filter was used to accentuate
colour contrast. A Zeiss microscope (Carl Zeiss, Jena, Germany)
equipped with a digital camera was used for all observations. Methyl
Violet (1% in distilled water; BDH Laboratory Supplies, Poole, UK)
was also used as a stain to demarcate boundaries of cell colonies.

Carmine marker. Carmine-labeled HeLa cells were prepared by
culturing cells in medium containing 0.2% carmine powder (Fisher
Scientific Co., Chicago, IL, USA) for 24 h and by washing twice in
serum-free medium (186, 259). Carmine appears as tiny dark particles
(1-2 um) in the HeLa cell cytoplasm and is not transferred from one
cell to another.

Silver staining. Methanol-fixed cells were silver-stained using the
method of Goodpasture and Bloom (260). Staining was monitored
under a microscope.

Autoradiography. Metabolic co-operation and cell—ell communication
were examined by monitoring tritiated nucleotide exchange between
donor (labeled) and recipient cells. The procedure used has been
described elsewhere (261). The donor cells were pre-labeled with 3H-
uridine (*H-UdR) [0.1 pCi/ml, specific activity (sp. act.) 21 Ci/mmol];
3H-thymidine (H-TdR) (0.1 pCi/ml, sp. act. 25 Ci/mmol) (GE
Healthcare, Amersham, UK).

Non-specific esterase (NSE) staining. The method described by
Nestor and Bancroft (262) using o-naphthyl acetate (Sigma-Aldrich
Biotechnology, St. Louis, MO, USA) as substrate at pH 7.1 was
adapted with some modifications. Live cells on coverslips were
washed 3 times in physiological saline (PS), placed in a Scm-diameter
petri dish and stained under microscopic monitoring at x25 for
approximately 30 min. Fast red TR (Sigma-Aldrich Biotechnology,
St. Louis, MO, USA) was used instead of pararosaniline
hydrochloride and counterstaining was not used. Cells were then
washed in PS, dehydrated in alcohol, fixed in xylene and mounted in
DPX. Acetazolamide (20 uM; Sigma-Aldrich Biotechnology, St.
Louis, MO, USA) was used to suppress carbonic anhydrase activity
(263-265), which was very profound within 5-10 min if
acetazolamide was not used. Areas with NSE activity were stained
light red to reddish brown.
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Lipid staining. Live cells on coverslips were washed gently in PS,
transferred into a 5 cm petri dish with 3 ml PS and 0.2 ml dye solution
(Sudan Black B, in 1% alcohol; Sigma-Aldrich Biotechnology, St.
Louis, MO, USA) and staining was monitored under the microscope at
x25 for 1 h. Cells were gently washed in water and mounted in glycerin
jelly. Large fat and lipid droplets stained light blue-grey were seen by
adjusting the focus. Lipid droplets in the cytoplasm were stained grey.

Ki-67. The detection of Ki-67 nuclear proliferation antigen was
carried out immunohistochemically as previously described (266).

E-Cadherin immunohistochemical staining. Cell monolayers were
fixed in methanol for 5 min at 4°C. After rehydration, endogenous
peroxidase activity was blocked by incubation in 3% hydrogen
peroxide for 10 min at room temperature. Subsequently, the cells were
exposed to normal serum for 30 min to block non-specific binding
and incubated with the antibody to E-cadherin (4A2C7 clone, diluted
1:200; ZYMED Laboratories, San Francisco, CA, USA) for 1 h at
room temperature. A biotinylated anti-mouse antibody was then added
to cells for 45 min and they were treated with the streptavidin-biotin-
peroxidase complex solution (Vectastain Elite ABC Kit; Vector
Laboratories, Inc., Burlingame, CA, USA) for 30 min. Finally, cells
were incubated with 3,3-diaminobenzidine (DAB), monitored for
development of a brown reaction product and then slightly
counterstained with Mayer’s hematoxylin. MCF-7 and Jurkat cells
were used as positive and negative controls, respectively. No specific
staining was observed when primary antibody was omitted.

Dihydrofolate reductase (DHFR). Cells on coverslips were fixed in
5% paraformaldehyde and stained for DHFR as described by
Huennekens et al. (267). Counterstaining with Giemsa for 5 min
enabled improved observation of the cells.

Apoptosis assessment. Apoptosis in cell monolayers stained with
Giemsa was morphologically verified under microscopy by the co-
existence of nuclear fragmentation, nuclear abnormalities, micronuclei,
apoptotic bodies, cellular membrane blebbing, cytoplasmic vacuolation,
condensed basophilic cytoplasm, and cell shrinkage (268, 269).

Results

1. Description of the finite SF cell lines. Derivation of the cell
lines used in the experiments is reported in Table I. Some of
them (AK, G-EP, G-L, PG-M, PL-BC, SE-L, TONS-F) were
produced and described earlier. SF lines originating from
tumour tissues were shown to possess a normal karyotype and
an uncontrolled growth pattern in vitro, with overlapping and
piling up of cells (134, 142). Figure 1 shows the morphology
of a sparse (a) and a confluent (b) monolayer of normal skin
fibroblast cell line G-EP. Figure 2 shows cell overlapping in a
cell monolayer of G-L cells isolated from a metastatic lymph
node of a patient with breast cancer. The recently developed
SF cell lines, KA-BC, KR-BC, LA-BC, presented the same
features as PL-BC.

In SF cell line monolayers produced from malignant tissues,
two remarkable features were observed: (i) the presence of
small cells with darkly stained nuclear fragments during the
first and second in vitro passages (Figure 3 a, b), diminishing

and disappearing at subsequent passages; and (ii) the very rare
observation of cells with fragmented nuclei and cells
resembling plasma cells with a clock-face pattern of nuclear
chromatin (Figure 4).

2. Importance of the HeLa:fibroblast cell ratio and of medium
renewal in the growth and behaviour of both cell types. A
confluent fibroblast monolayer with contact-inhibited
fibroblasts served as a perfect feeder layer for HeLa cells.
Even a small inoculum of 1-5 HeLa cells was able to
successfully grow on top of the fibroblasts, producing dense
colonies of HeLa cells entirely covering and destroying the
fibroblast layer with or without replacement of the medium
(Figures 5, 6, 7). In contrast, fibroblasts (at any inoculum
between 5 and 10% cells/ml/1 cmz) cast over a confluent HeLLa
cell monolayer did not attach to the HeLa cells. When
fibroblasts found any empty space among HeLa cells, they
attached and extended, but did not divide. The same effect was
observed when a high ratio of HeLa cells:fibroblasts (e.g.
20:1; 20%103:103 cells) was used. Fibroblasts were able to find
space to attach but were very soon contact-inhibited by the
HeLa cell population (Figure 8). The same effect was seen
when an inoculum of HeLa cells and fibroblasts at ratio of 1:1
with 20x10%:20x103 cells was used.

When an inoculum ratio of 1:1 with 1x103:1x103 to 1x10%:
1x10* HeLa cells:fibroblasts was used, both cell types had
space and time to attach and multiply. A high affinity between
the two cell types was observed in all modes of co-culture,
whether by inoculating HeLa cells and fibroblasts together or
separately over a pre-attached non-confluent fibroblast or
HeLa cell monolayer, as soon as after 2 days of co-culture. In
all these combinations, affinity and absence of overlapping
was observed. This phenomenon was observed using the
earlier developed fibroblast cell lines (119) and confirmed
using all the recently developed cell lines. When medium was
not renewed after 2 days of co-culture, fibroblasts stopped
replicating, while HeLa cells continued to multiply for three
to five days (depending on the initial cell inoculum) before
exhausting the medium and lowering the pH below 6.8. The
above-described phenomena were observed with all of the
finite fibroblast cell lines used in this study.

When an inoculum of 10° fibroblasts/ml was cast over a
monolayer of small HeLa-cell colonies (6-40 cells in each
colony), fibroblasts attached to the entire available glass
coverslip surface, but did not overlap HeLa cells, seemingly
respecting their territory (Figure 9). However, a rare exception
was observed with one cell line, SE-L, in which the fibroblasts
showed profound overlapping with HeLa cells (Figure 10).

3. Development of basic procedure for cell-to-cell interactions
in vitro. By testing various inocula of fibroblasts, it was found
that only inoculation with >103/cm? fibroblasts could provide an
actively replicating and motile fibroblast population lasting
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Figure 1. Normal skin fibroblasts (G-EP) isolated from a patient with breast cancer. Giemsa, a: non confluent monolayer, x25; b: confluent
monolayer, x80. Figure 2. Stromal fibroblasts (G-L) isolated from a metastatic lymph node of a patient with breast cancer. Cells show overlapping.
Giemsa, x80. Figure 3. Second passage monolayer of stromal fibroblasts (G-L) isolated from a metastatic lymph node of a patient with breast
cancer showing darkly stained nuclear fragments, possibly originating from apoptotic cancer cells. Giemsa, a: x600; b: x1000. Figure 4. First
passage monolayer of stromal fibroblasts (PL-BC) isolated from a primary breast adenocarcinoma, showing darkly stained apoptotic cells (arrow)
and a clock face-like cell (double arrow) close to a normal fibroblast (asterisk). Giemsa, x600. Figure 5. Confluent fibroblast (PL-BC) feeder layer
in co-culture with HeLa cells. HeLa cells (5x103 in I mL medium) were seeded on a 1x1 cm coverslip with a confluent cell monolayer of PL-BC
fibroblasts and incubated for 32 h without medium replacement. Adhesion of HeLa on the top of the fibroblasts is apparent. Giemsa, x20. Figure
6. Same culture as shown in the legend to Figure 5, after 72 h without medium replacement. Overgrowth of HeLa on top of the fibroblasts can be
seen. Giemsa, x15. Figure 7. Same culture as shown in the legend to Figure 5, after 144 h without medium replacement. A few remaining fibroblasts
with faint cytoplasms and nuclei, and shrunk, obviously starving HeLa cells are visible. Giemsa, x20.

longer than 12 days, due to the low plating efficiency of these
finite cell lines. Considering the feeding antagonism between
HeLa cells and fibroblasts and the faster replication time of HeLa
cells, in order to avoid exhaustion of the medium (usually
occurring after 2-3 days in HeLa cultures and 4-5 days in
fibroblast cultures), it was replaced every 2 days in all co-
cultures. The procedures using small HeLa-cell colonies at the
start of experiments, as described in the Materials and Methods
section, were found to secure the parallel growth of both cell
types in co-culture for at least 12-16 days (corresponding to
approximately 6-8 fibroblast replications and 18-24 HeLa cell
replications) at a HeLa cell:fibroblast ratio of about 1:100,
without obstruction of fibroblast growth. Thus, a co-culture
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system with equal growth and space advantages for both HeLa
cells and fibroblasts was established and used throughout the
present experiments. It should be noted that during the whole co-
culture period studied, the interactions between HeLa cells and
fibroblasts caused remarkable fluctuations in the ratio between
the two cell types because of inhibition or acceleration of growth
of one or the other cell type in focused areas of the cultures.

4. Tropism and affinity between fibroblasts and HeLa cells,
and encirclement of HeLa-cell colonies by fibroblasts. It was
observed that fibroblasts showed a remarkable tropism and
contact guidance towards HeLa cells. They became very
elongated and bent, and finally encircled, but did not intrude
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Figure 8. Monolayer of confluent HeLa cells with a contact-inhibited AK fibroblast. A dilute suspension of fibroblasts (103 AK cells in 1 mL medium)
was seeded over an almost confluent HeLa monolayer on a 1x1 c¢cm coverslip and cells were cultured for 72 h. In such co-cultures, fibroblasts were
only able to attach to empty areas of the coverslip surface among HeLa cells but were unable to multiply. Similar results were obtained with all types
of normal and stromal fibroblasts used. Giemsa, x252. Figure 9. G-EP fibroblasts and HeLa cell co-culture. An inoculum of 10° G-EP fibroblasts in
1 mL medium was cast over a monolayer of small HeLa colonies (6-40 cells/colony) on a 1x1 cm coverslip and cultured for 72 h, with medium
replacement at 50 h. Fibroblasts attached to the available glass surface in this image did not overlap the HeLa cells. Giemsa, x40. Figure 10. SE-L
fibroblasts and HeLa co-culture. An inoculum of 105 SE-L fibroblasts in 1 mL medium was cast over a monolayer of a small HeLa cell (6-40 cells)
colony on a 1x1 cm coverslip and cultured for 72 h, with medium replacement at 50 h. A profound overlapping of SE-L cells on HeLa cells can
clearly be seen. This phenomenon was not observed with any of the other fibroblastic cells used. Giemsa, x40. Figure 11. Encirclement of HeLa-cell
colonies by fibroblasts. An inoculum of 103 KR-BC cells in 1 mL medium was cast over a non-confluent monolayer of large and small HeLa-cell
colonies and cultured for 50 h. The tendency of the fibroblasts to encircle the small HeLa colonies is obvious. Giemsa, x120. Figure 12. Same co-
culture conditions for 72 h as shown in the legend to Figure 11. Giemsa, x140. Figure 13. Edge of a HeLa-cell colony surrounded by G-EP fibroblasts.
Same conditions as shown in the legend to Figure 11. Fine cytoplasmic connections between HeLa cells and fibroblasts are obvious. Giemsa, x220.

into the HeLa-cell colonies (Figures 11, 12, 13). The
encirclement of HeLa-cell colonies by the fibroblasts was
observed from the second day of co-culture. Provided that
growth space was available and the medium was replaced
every two days, the fibroblasts appeared to show tropism
towards small HeLa-cell colonies and encircled them.

While HeLa-cell colonies started to be surrounded by
fibroblasts, the nuclei of the peripheral HeLa cells were
characteristically positioned far from the fibroblasts and
towards the centre of both small (Figure 14) and large (Figures
13, 15 and also Figures 56, 60) colonies. Control HeLa-cell
colonies (without fibroblasts) did not demonstrate this
behaviour (Figures 16, 17), at least not so markedly in all
peripheral HeLa cells as in the co-cultures with fibroblasts.
However, when HeLa cells were cast over a dilute monolayer
of fibroblasts, the HeLa cells preferentially attached around
the fibroblasts, with their nuclei favorably positioned close to
the fibroblasts (Figures 18, 19). In such cultures, a remarkable
feature of the affinity between the two types of cells was the

development of long cytoplasmic projections of HeLa cells
along the edges of the fibroblasts (Figures 20, 21), as also
shown by casting a carmine-relabeled HeLa cell suspension
over a sparse fibroblast monolayer (Figure 22).

During the parallel growth of the HeLa-cell colonies and the
encircling fibroblasts, HeLLa cells started piling up in the central
areas of the colonies, but also grew actively at the peripheries of
the colonies, thus forcing the fibroblasts to become more
elongated while being pushed back, without intermixing or
overlapping. At this stage, two distinct types of HeLa-cell
colonies were observed: (a) colonies with densely growing cells
and piling up of cells in the centre, which were encircled by a
dense fibroblastic bow, and (b) colonies with densely or loosely
growing cells and piling up of cells in the centre but which were
not amply encircled by fibroblasts. This phenomenon was
previously described using a finite skin fibroblastic cell line (G-
EP) (186) and confirmed in the present study for all fibroblastic
lines used. Interestingly, this phenomenon shows that even in a
single HeLa clone, a variation in colony morphology, as
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Figure 14. Small HeLa-cell colony surrounded by fibroblasts, showing movement of nuclei toward the centre of the colony. An inoculum of 105 KR-
BC cells in 1 mL medium was cast over a monolayer of sparse HeLa colonies with 4-10 cells and cultured for 24 h. Giemsa, x140. Figure 15. Large
HeLa-cell colony surrounded by fibroblasts, showing that all cells at the outer edges of the colonies move their nuclei towards the centre of the
colony. An inoculum of 105 KR-BC cells in 1 mL medium was cast over a monolayer of large HeLa colonies and cultured for 24 h. Giemsa, x100.
The same phenomenon is also obvious in Figure 13. Figure 16. A control HeLa-cell colony. Methyl violet, x100. Figure 17. A large control HeLa-
cell colony, not showing nuclear movement of peripheral HeLa cells, with a giant multinucleated cell. Methyl violet, x40. Figure 18. A HeLa cell
(left) just attaching to a fibroblast. A dilute suspension of 103 HeLa cells in 1 mL medium was cast over a monolayer of dilute AK fibroblasts and
cultured for 2 h. Note that the attaching HeLa cell locates its nucleus close to the fibroblast. Giemsa, x1000. Figure 19. HeLa cells attaching to a
AK fibroblast. Same conditions as shown in the legend to Figure 18. The affinity between the two types of cells is profound and the movement of the
HelLa cell nuclei towards the fibroblasts is apparent after 4 h of co-culture. Giemsa, x220. Figure 20. AK fibroblasts and HeLa co-cultures as shown
in the legend to Figure 18. After 6 h of co-culture, the affinity between the two cells is obvious. x1000. Figure 21. Same condition of AK fibroblasts
and HeLa co-cultures as shown in the legend to Figure 18, but after 12 h of co-culture. x1000. Figure 22. G-EP fibroblasts and HeLa cells co-
cultured for 2 h, as in the legend to Figure 18. HeLa cells were pre-labeled with carmine particles which are apparent in the HeLa-cell cytoplasm
as well as on the cytoplasmic projection of the HeLa cell at the edge of the fibroblast (arrow). Giemsa, x600.

previously shown (257), may develop, along with a specific
response from the fibroblasts.

5. Overgrowth of fibroblasts around HeLa-cell colonies. From the
fourth to the eighth day of co-culture, the encircling fibroblasts
progressively outgrew and created very dense areas with
frequently observed multilayers and crossing growth pattern,
indicating uncontrolled growth with loss of contact inhibition, as
well as loss of parallel pattern of cell growth (Figures 23, 24).
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This phenomenon was evident for normal skin fibroblasts (G-
EP), tonsillitis fibroblasts and all cancer-derived SF.

If at this stage the medium was not replaced for 4 days, a
HeLa cell layer would appear outside the dense fibroblast
layer (Figure 25) and if medium was then renewed,
fibroblasts again started to form a second encircling dense
bow, as previously described (186). This phenomenon shows
(a) the importance of medium replacement since fibroblasts
need nutrients for growth and for maintenance of their
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Figure 23. Overgrowth of fibroblasts around HeLa-cell colonies. G-EP cells (105 in 1 mL medium) were cast over a monolayer of dilute HeLa-cell colonies
(6-10 cells/colony) on a 1x1 cm coverslip and cultured for 7 days with medium replacement every 2 days. Giemsa, x50. Figure 24. Under the same
conditions as described in the legend to Figure 23. PL-BC fibroblasts were cast over HeLa-cell colonies. Overgrowth of the fibroblasts with criss-cross
growth and multilayers can be seen around HeLa-cell colonies. Giemsa, x60. Figure 25. Formation of a HeLa cell layer outside the dense G-EP fibroblast
layer surrounding a HeLa-cell colony following four days without renewal of the medium. Co-culture conditions were similar to those given in the legend
to Figure 23, with a total co-culture period of 11 days. Giemsa, x50. Figure 26. Polygonal pattern of co-growth of KR-BC fibroblasts with HeLa on the 10th
day of co-culture under same conditions as given in the legend to Figure 23. The same polygonal pattern was obtained with all cells used in this study. Silver
staining, x20. Figures of this polygonal pattern are also shown in Figures 31, 37 and 41. Figure 27. A focus of abundant multinucleated HeLa cells can
be seen located at the boundary of a HeLa-cell colony surrounded by LA-BC fibroblasts, on the 15th day of co-culture. Giemsa, x120. Figure 28. A
multinucleated HeLa cell which also contains a small light-pink nucleus, possibly of fibroblastic origin. LA-BC fibroblasts and HeLa, 11 days, Giemsa, x600.
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capacity to confine HeLa-cell colonies, and (b) the capacity
of HeLa cells to pass the dense layer of fibroblasts. When the
medium was regularly replaced every 2 days, this
phenomenon was not observed.

The pattern of co-growth after approximately the seventh
day of co-culture was characterized by the development of a
polygonal morphology of HeLa-cell colonies, surrounded by
densely growing fibroblasts (Figures 26, 41). The width of the
fibroblast area around the HeLa-cell colonies seemed to
depend on the initial cell-to-cell ratio and cell number, the
degree of pushing back by the expanding HeLa-cell colonies
and the strength of fibroblast proliferation.

6. Appearance of areas with abundant multinucleated HeLa
cells. The frequency of multinucleated cells in HeLa cell
monolayers was very low. Usually, 1-2 multinucleated cells
were seen in a HeLa-cell colony with approximately 300 cells
(Figure 17). However, in the co-cultures of HelLa and
fibroblasts, areas with abundant multinucleated HeLa cells,
always at the edges of the colonies, were frequently observed
(Figure 27) (see also Figures 8, 9 in reference 186). Most of
these cells contained nuclear abnormalities and micronuclei,
indicating previous abnormal mitoses. Rarely, some of these
multinucleated HeLa cells contained a nucleus of possibly
fibroblast origin, as judged from the distinctly different colors
of the nuclei of HeLa cells and those of fibroblasts when
stained with Giemsa (Figure 28). Whether or not this was a
result of cell fusion was not further investigated.
Multinucleated HeLa cells soon became apoptotic with nuclear
fragmentation and profound cytoplasmic membrane blebbing
as described below (section 8; apoptosis) (Figures 63, 64).

7. Proliferation and metabolic activities in HeLa cell-
fibroblast co-cultures. The following techniques and markers
indicating proliferative and metabolic activities were applied
in HelLa cells, fibroblasts and their co-cultures: Ki-67
proliferation antigen, NSE, E-cadherin, silver staining, DHFR
and lipid staining.

7a. Ki-67. HeLa cells positively stained for Ki-67, with a high
intensity in the nuclei, indicating cell proliferative capacity.
HeLa-cell colonies staining for Ki-67 showed an increased
activity in the foci of cells in central areas. The periphery of
the HeLa colonies did not share the same increased activity,
even in areas where two HeLa-cell colonies adjoined (Figure
29). Fibroblasts did not exhibit positive Ki-67 staining even in
areas of dense growth. However, in co-culture with HeLa cells,
fibroblasts induced intense Ki-67 staining in HeLa nuclei at
the edges of the HeLa-cell colonies which were in contact
with the dense encircling fibroblast areas (Figures 30, 31). The
latter exhibited a pink cytoplasmic color (Figure 32), which
became very intense after 10 days of co-culture, still without
any staining of the nuclei (Figure 33).
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7b. NSE live staining. HeLa cells expressed NSE activity,
especially in the area surrounding the nucleus; however,
when acetazolamide, an inhibitor of carbonic anhydrase
(CA) was used, this activity almost disappeared. This shows
that the activity in HeLa is attributed to CA and not to NSE.
CA was amply expressed around the nucleus and in
numerous cytoplasmic granules in both cell types (Figure
34), as shown utilizing the live cell staining technique
described in the Materials and Methods section. The CA-
granules in cytoplasmic projections of fibroblasts in contact
with HeLa cells were markedly larger (Figure 35, live cell
staining; Figure 36, paraformaldehyde-fixed cells). CA in
co-culture was abundantly expressed, especially in the
encircling fibroblast bows and the foci of HeLa cell piling
up, with intense diffusion in paraformaldehyde-fixed
preparations (Figure 36). However, when acetazolamide was
used, the true NSE activity was revealed to be red only on
the dense fibroblast areas surrounding the HeLa-cell
colonies and the HeLa colony piling up in the centre seen
with live-cell staining for 21/2 h (Figures 37, 38). When
staining was continued for 4 h, higher activity also appeared
in HeLa cells (Figure 39). Staining of paraformaldehyde-
fixed cells for NSE gave inferior results, with blurred
appearance of the stained areas. Using live-cell NSE
staining, NSE activity first appeared at 5 min on the nuclear
membrane of the fibroblasts and then at 15 min in the
cytoplasm as spherical stained droplets.

7c. Silver staining. Using silver staining, the cytoplasm of
HeLa cells was stained light yellow and the nuclei dark
brown with black nucleoli. Fibroblast nuclei were stained
brown to dark brown with black nucleoli and the cytoplasm
was stained brown (Figure 40). By monitoring the staining
under the microscope, after the same duration of staining
(about 30 s), HeLa cytoplasm was yellow, while that of
fibroblasts was brown. Longer staining resulted in very dark
uninterpretable staining.

From the fourth day of co-culture, progressively increasing
argyrophilia (silver staining) (Figures 26, 41) and basophilia
(Giemsa staining) (Figures 23, 24) were observed in the dense
layer of fibroblasts surrounding the HeLa-cell colonies (Figure
41). Eventually, from the sixth day of co-culture, the
fibroblasts developed an anarchic growth pattern, with
overlapping cells and unusually long dark brown argyrophilic
cytoplasmic projections (Figures 42, 43). These observations
indicate that in the regions of dense growth, the fibroblasts
underwent a further phenotypic change (after their dense
growth), characterized by higher amounts of argyrophilic
(basic) proteins and an intense tendency to elongate and
overlap each other. Alongside this phenomenon, gaps started
to appear in the periphery of the HeLa-cell colonies, clearly
due to detachment of HeLa cells (Figure 43 a, b; described in
Results Section 8).
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Figure 29. HeLa-cell colony boundaries do not show increased staining of Ki-67 even in areas where two HeLa-cell colonies adjoin. x40. Figures 30,
31,32, 33. Ki-67 activity in co-cultures of HeLa cells with LA-BC cells after 6 days (Figure 30, x40), 8 days (Figure 31, x40, Figure 32, x100) and
10 days (Figure 33, x100). Intense pink cytoplasmic staining of the fibroblasts after 10 days can be seen. Figure 34. Carbonic anhydrase expression
(CA) in numerous cytoplasmic granules in both fibroblasts and HeLa cells. KR-BC fibroblasts and HeLa cells co-cultured for 11 days. Live staining.
x252. Figure 35. Intense CA expression (arrow) in fibroblast cytoplasmic projections in contact with HeLa cells. KR-BC fibroblasts and HeLa co-
cultures for 11 days. Live staining. x252. Figure 36. CA reaction in KR-BC fibroblasts and HeLa co-cultures for 11 days. Esterase staining of
paraformaldehyde-fixed coverslips. Intense CA staining in both HeLa and fibroblasts is obvious. The arrow indicates intense expression in fibroblastic
cytoplasmic projections in contact with HeLa cells. x252. Figure 37. Non-specific esterase (NSE) staining of LA-BC fibroblasts and HeLa cells, co-
cultured for 13 days, using acetazolamide (CA inhibitor) and the live staining technique. NSE activity is located in the areas of fibroblasts surrounding
the HeLa-cell colonies as well as in the piling up at the centre of the HeLa colonies. Staining time: 2 1/2 h. x30. Figure 38. As in Figure 37, live NSE
staining with acetazolamide. Staining time: 2 1/2 h. x10. Figure 39. As in Figure 37, live NSE staining with acetazolamide. Staining time: 4 h. Intense
NSE activity can be seen in the areas of dense fibroblastic growth (arrows). x25. Figure 40. Silver staining of a monolayer of KR-BC cells. x120.
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Figure 41. Composite image of a KR-BC fibroblasts and HeLa cell co-culture. An inoculum of 105 KR-BC cells in 1 mL medium was cast over a
monolayer of HeLa-cell colonies (with ~10-40 cells) and cultured for 10 days, with medium replacement every 2 days. A polygonal pattern of co-
growth, dense growth of fibroblasts around HeLa cells and gaps along the boundaries of the HeLa colonies are clearly visible. Silver staining. x50.
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Figure 42. a: Anarchic pattern of growth of KR-BC fibroblasts surrounding HeLa-cell colonies after 10 days of co-culture. b: High magnification (x200) of
the left inset in part (a) (x20), showing a fibroblast with long argyrophilic projections. c: High magnification (x240) of the right inset in part (a), showing
anarchic growth of fibroblasts with overlapping cells and intense argyrophilia. Silver staining. Figure 43. a: HeLa colonies surrounded by densely grown highly
argyrophilic fibroblasts (x60), b: Detail of the inset indicated in part (a) showing the development of complex long cytoplasmic argyrophilic projections of
fibroblasts and gaps along the boundaries of the HeLa-cell colony (x270). KR-BC fibroblasts and HeLa cells, 12 days of co-culture, Silver staining.

7d. E-Cadherin. Neither HeLa cells nor fibroblasts expressed
E-cadherin when cultured alone. Nevertheless, in co-culture
for 11 or 14 days, E-cadherin appeared to be profoundly
expressed at the peripheries of HeLa colonies surrounded by
fibroblasts (Figure 44 a, b). Expression of E-cadherin was
visible around parts of the HeLa cell nuclei, with some
diffuse positivity in the cytoplasm, and rarely, in the nucleus
(Figure 44c). In multinucleated HeLa cells, only a small part
of the cytoplasm was E-cadherin-immunopositive, whereas
the nuclei were negative.

7e. DHFR. Although the boundaries of HeLa-cell colonies
when alone did not stain intensely for DHFR (Figure 45), when
such colonies were surrounded by fibroblasts, a very intense
DHEFR reaction was observed occupying a wide zone of about
5-12 HeLa cells from the point of contact with the fibroblasts
towards the centre of the colonies (Figures 46, 47, 48).

The appearance of a very remarkable increase of strongly
luminous mitotic cells within this zone indicated growth
stimulation. HeLa cell nuclei stained dark blue, nucleoli darker

blue and cytoplasm light blue. The cytoplasm and nuclei of
the fibroblasts stained very faintly for DHFR (Figure 49),
while some staining of nucleoli was seen at high
magnification. Rarely, some cells of fibroblastic morphology
around the HeLa-cell colonies showed intense cytoplasmic and
nuclear DHFR staining, which may indicate that these cells
were starting to enter the mitotic phase.

7f. Live staining of lipid. From the sixth day of co-culture, a
progressive increase in the production and secretion of high
numbers of lipid droplets by the encircling dense layer of
fibroblasts was noticed (Figures 50, 51). These droplets
accumulated only over the fibroblasts surrounding the HeLa-
cell colonies and could be easily dislodged by agitation or
moderate medium flow over them. When using methanol- or
paraformaldehyde-fixed cell monolayers, these droplets
dissolved and were not seen in fixed cells. In fixed HeLa cells,
lipid staining was located in granules around the nuclei
(Figure 52), while in fibroblasts it was located in cytoplasmic
granules (Figure 53).
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Figure 44. HeLa colonies surrounded by KR-BC fibroblasts after co-culture for 11 days, stained for E-cadherin. a: negative control (x50). b: E-cadherin
expression located at the HeLa colony periphery (x50).

In co-culture, both cell types but even more so the
fibroblasts, had higher numbers of lipid-stained cytoplasmic
granules (Figure 54 a, b). In the dense layer of fibroblasts,
lipid staining was diffuse (Figure 54 a, arrow) because of large
lipid droplets that were loosely attached to the fibroblasts
(Figure 51).

8. Apoptosis in HeLa-fibroblast co-cultures. Four distinctive
phenomena were observed with increasing frequency after
nine to ten days of co-culture close to the boundaries of
HeLa-cell colonies surrounded by densely growing
fibroblasts:

(a) detachment from the glass surface of groups of HelLa
cells (Figures 43 a, b, 55, 56, 57, 58); (b) dilution of the
HeLa cell density due to detachment after cell death and
cytoplasmic shrinkage (Figures 32, 33, 41, 43, 57, 58); (¢)
areas of very dense growth of fibroblasts (close to HeLa-
cell colony edges), with long, highly argyrophilic
cytoplasmic projections and cell overlapping (Figures 42,
43, 55, 56); (d) regrowth of HeLa cells in areas of
detachment but also within fibroblastic territories (Figures
57,59, 60).

Small cytoplasmic fragments, mostly containing a darkly-
stained small nucleus, were frequently observed from day
10 and were abundant after day 15 in areas of reduced HeLa
cell density where, however, the fibroblasts did not show
signs of distortion (Figures 61 a, b, 62 a, b, c; also Figure 56
upper part).

From the tenth day of co-culture, a continuously increasing
occurrence of apoptotic features in HeLa cells was observed
including nuclear fragmentation, cell shrinkage and long, thin
projections (condensed basophilic cytoplasm), chromatin
condensation, micronuclei, nuclear abnormalities, membrane-
bound apoptotic bodies (small cells), and cellular membrane
blebbing (Figures 62, 63, 64, 65). Cell fragments with similar
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features (fragmented nuclei, dark condensed cytoplasm and
blebbing) were also observed during the first and second
passages of fibroblasts isolated from human breast tumours
(Figures 3 a, b, 4), most probably originating from apoptotic
cancer cells.

Nuclear abnormalities were rarely observed in fibroblasts.
These included nuclear fragmentation, nuclear gaps, nuclear
membrane indentations and multinucleated cells (Figure
66 a,b,c,d,e).

Cytotoxic effects on HeLa cells were exhibited by all the
finite fibroblastic cell lines used (Table I) and were not
differentiated by fibroblast origin.

After 17 days, control HeLa-cell colonies covered the
whole coverslip, piling up very extensively, and started to
detach in batches, mainly at the colony centre, and did not
have multinucleated cells, apoptotic features, regrowth or
sparse growth. The pattern of HeLa cell detachment at the
piled-up centre of HeLa colonies (e.g. Figure 26) was
completely different from the detachment of HeLa cell groups
from the HeLa-colony boundaries during their interaction with
fibroblasts (Figure 41).

9. Blockade of fibroblasts at G,-M phase after 17 days of
HeLa cell-fibroblast co-culture. After 17 days of co-culture
of HeLa cells (colonies) with fibroblasts, extensive areas of
the co-culture contained a high proportion of fibroblasts
blocked in early to late (G,-M) prophase (Figure 67 a, b) as
shown by fading and disappearance of the nucleolus,
disappearance of the nuclear membrane and by chromatin
condensation into chromosomal regions (Figure 68 a-¢). G,-
M nuclei were usually ovoid or exceptionally elongated
(Figure 69 a-d), usually with a constriction (Figure 69
arrows). These observations show that the effects of HelLa
cell-fibroblast interactions extend to alterations of the
chromatin organization in fibroblasts.



Delinasios et al: Biological Interactions in Co-cultures of Proliferating Fibroblasts and HeLa Cells

Figure 44c. E-Cadherin expression in HeLa cells in co-culture with KR-BC cells for 11 days. Conditions were as described in the legend to Figure 23.
x500. Figure 45. Part of a control HeLa-cell colony stained for DHFR. Cells which have just divided are brightly stained (centre). x100. Figure 46. HeLa-
cell colonies surrounded by fibroblasts exhibit very intense DHFR staining perimetrically and in a wide zone of boundary HeLa cells. LA-BC fibroblasts
and HelLa cells co-cultured for 9 days. Conditions were as described in the legend to Figure 23. x60. Figure 47. b: Same as shown in legend to Figure 46.
DHFR-staining with light 1-min Giemsa counterstaining. x50. Figure 48. Gaps (arrow) along the boundaries of the HeLa-cell colonies in areas of anarchic
fibroblast growth. LA-BC fibroblasts and HeLa cells cultured for 9 days. Conditions were as described in Figure 23. DHFR staining with light 1-min
Giemsa counterstaining. x80. Figure 49. LA-BC fibroblast monolayer stained for DHFR. x30. Figure 50. Accumulation of lipid droplets over dense layers
of fibroblasts surrounding HeLa-cell colonies. KR-BC fibroblasts and HeLa cells were co-cultured for 10 days. KR-BC cells (10° in 1 mL medium) were
cast over a monolayer of sparse HeLa-cell colonies (6-10 cells/colony) on a 1x1 cm coverslip and co-cultured for 10 days with medium replacement every
2 days. Sudan Black staining. x 10. Figure 51. High magnification (from Figure 50) of the lipid droplets accumulated over the surrounding fibroblasts. By
adjusting the focus, large homogeneously light-staining droplets were seen located over the fibroblasts (arrow). Fibroblasts carried small darkly-stained lipid
cytoplasmic granules, which can also be seen here (double arrow). x300. Figure 52. Lipid staining in HeLa cells was located in granules around the nuclei.
Sudan Black staining. x300. Figure 53. Lipid staining of cytoplasmic granules in KR-BC fibroblasts. Sudan Black staining, x50. Similar lipid staining was
obtained for all SF cell lines used. Figure 54. Lipid staining in KR-BC fibroblasts and HeLa cells co-cultured for 10 days. In the dense fibroblastic areas
(arrow in part a), the large lipid droplets caused diffused staining (see part b), while in less dense areas of fibroblasts (asterisk) as well as in areas colonized
by HeLa cells (double arrow), cytoplasmic lipid granules are obvious. Sudan Black staining. a: x30; b: box from Figure 54a, x80.
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Figure 55. Detachment from the glass surface of groups of HeLa cells from the peripheries of HeLa-cell colonies surrounded by densely growing
highly argyrophilic fibroblasts. KR-BC and HeLa cells cultured for 10 days. Conditions were as described in the legend to Figure 50. Silver staining
a: x60; b: x120. Figure 56. Higher magnification of the inset in Figure 54 b. x600. Figure 57. As in Figure 55, after 12 days of co-culture. Larger
empty areas of detached HeLa cells but also resurgence and growth of HeLa cells outside the dense surrounding fibroblast layer can be seen (arrow).
Silver staining, x30. Figure 58. As in Figure 55, after 12 days of co-culture showing extensive HeLa cell detachment. Silver staining, x30.
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Figure 59. As in Figure 55, after 10 days of co-culture, showing area of HeLa cell detachment, with some HeLa cells attached on the inner side of the
surrounding stromal fibroblasts (arrow). DHFR staining with 1-min Giemsa counterstaining. x50. Figure 60. As in Figure 55, after 12 days of co-
culture, showing complete detachment of a small HeLa-cell colony, resurgence of two new HeLa colonies (single arrows) and regrowth of some HeLa
cells on the side of the surrounding fibroblasts (double arrow). KR-BC fibroblasts and HeLa, DHFR staining with 1-min Giemsa counterstaining. x 140.

10. Transfer of small molecules between HelLa cells and
fibroblasts in co-culture. Transfer of >H-TdR from pre-labeled
HeLa cells or fibroblasts to non-labeled fibroblasts or HeLa
cells, respectively, was never observed in any cell ratio.
Autoradiography of co-culture coverslips after 3 h to 20 days
revealed that *H-labeled grains remained only on the nuclei
of the pre-labeled cells (Figure 70 a, b). None of the
fibroblastic lines used differed in their pattern of interaction.

Transfer of H-UdR from fibroblasts to co-adhered HeLa
cells, and through them also to HeLa cells that were not co-
adhered to fibroblasts, occurred rapidly, at as early as 1 h or
less of co-culture, until the density of *H-labeled grains in the
HeLa cells reached almost the same as that in the fibroblasts
(after 10 h) (Figure 71 a, b).

However, transfer of 3H-UdR from HeLa cells to co-
adhered fibroblasts occurred at a lower rate and the number of
3H-labeled grains over the fibroblasts reached only 1/10 that
over HeLa cells after 10 h (Figure 72).

Similar autoradiography results were obtained with G-EP,
SE-L, PG-BC and TONS-F cells.

11. The HeLa—fibroblast co-culture battlefield after 17 days.
After 17 and up to 20 days (Figures 73-75), the co-cultures
presented the following features: (a) extensive areas of very
dense growth of fibroblasts with a complex network of long
highly argyrophilic projections and foci of overlapping and
piling up cells. This feature started to appear from the ninth
day of co-culture (Figures 43, 55, 56, 75); (b) areas with both
fibroblasts and HeLa cells with a sparse pattern of growth
including small colonies of HeLa cells, several abnormal or
apoptotic HeLa cells, and rarely, fibroblasts with nuclear

abnormalities (Figures 62, 66, 73, 74); (c) areas with a high
percentage of fibroblasts blocked at the G,-M phase of the
cell cycle (Figure 67); (d) foci with unusually high numbers
of multinucleated HeLa cells with apoptotic features (Figures
63, 64, 65); (e) areas with extensive disintegration of HeLa
cells (Figures 62, 75); (f) areas of destroyed HeLa-cell
colonies showing extensive detachment of HeLa cells, but
also their regrowth in the same areas attached to surrounding
fibroblasts (Figures 57, 58, 59, 60) or forming dense colonies
(Figure 60).

These observations show that under biomechanical forces,
communication and interactions, fibroblasts and HeLa cells
influence each other’s growth pattern and survival. These
developments do not occur in clearly separated steps, since
foci of all the above features co-existed after 17-20 days of
co-culture, with some of them appearing as early as nine days
after the start of co-culture.

The duration of time that the two cell types are in contact
seems to topologically influence the emanation and sequence
of specific events, which also depends on frequent
replacement of medium.

Subculture of the co-cultures after the 17- to 20-day
period produced either a mixture of the two cell types or a
HeLa cell or fibroblast monolayer with contamination with
the other cell type, or, rarely, only fibroblast cells. Some
of the fibroblastic cell lines used (G-EP, AK, PL-BC) were
able to completely destroy HeLa cells when the initial ratio
of HeLa cells:fibroblasts was very low (<1:100); however,
this phenomenon was not apparent for all the finite
fibroblastic cell lines used. No association of this
phenomenon with a specific origin of fibroblasts was
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Figure 61. As in Figure 55, after 10 days of co-culture showing detachment of HeLa cell groups (a), (b): magnification of the inset in Figure 61a
showing a large area with many mini-cell fragments originating from HeLa fragmentation. These mini-cell fragments became more abundant after
the 15th day of co-culture. KR-BC fibroblasts and HeLa, Silver staining, a: x60; b: x180. Figure 62. As in Figure 61 b, after 15 days of co-culture
showing abundance of mini-cell fragments, intact fibroblasts and some reviving HeLa cells. Giemsa. a: G-EP fibroblasts and HeLa , x320, b: x320,
¢: KR-BC fibroblasts and HeLa, x50. Figure 63. Apoptotic features of multinucleated HeLa cells after 15 days of co-culture with LA-BC cells.
Conditions were as described in Figure 50. Giemsa, x800.
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Figure 64. Apoptotic features of HeLa cells after 15 days of co-culture with LA-BC fibroblasts. Nuclear fragmentation and intense cytoplasmic
blebbing are apparent. Giemsa. a: x120; b: higher magnification of the inset in a; x252.

established. It should be noted, however, that all fibroblasts
used were capable of inducing apoptosis and detachment
of HeLa cells. Moreover, all of them produced lipid
droplets when they were densely growing around HeLa-
cell colonies.

Discussion

The interactions between malignant epithelial cells and the
tumour microenvironment, including stromal fibroblasts, for
solid tumours involve growth interdependence and abnormal
growth control mechanisms, that advance tumourigenesis to
invasion and metastasis (270, 271). It is generally held that
carcinogenesis is the result of a series of initial genetic
alterations in a target cell, which then causes modulations of
the developing nearby tissue environment, thus facilitating
the un-interruptive growth of a tumour (1, 3). Therefore, the
existence of a tumour presupposes that abnormal cancer cells
have surpassed the immune system’s homeostatic
mechanisms and have established a modified cancer-
supportive microenvironment. Obviously, if the initial effort
of a small colony of cancer cells fails to overcome the
immune surveillance and to create an efficiently supportive
microenvironment, the tumour will not develop (251).
Therefore, there is a critical point at which a tumour will
start developing, or succumb under the restraint of its
microenvironment (6-8, 11, 46, 186, 251). The role of
fibroblasts at this point is unclear since most relevant studies
examined fibroblasts after the establishment of a fully-grown
tumour. Such studies have shown that CAFs may be
supportive or suppressive of tumour growth and progression
to invasion and metastasis, as described in the Introduction.

However, the initial stages before the crucial point of
overcoming the immune surveillance mentioned above have
not been investigated. The present study constitutes a
detailed description of the early interactions between
proliferating fibroblastic cells of different origins with HeLa
cells, based on a previously developed in vitro model (6, 9,
119, 186).

Stromal fibroblasts comprise a highly heterogeneic entity
within the tumour microenvironment. Our previous studies
showed that SFs isolated from human breast tumours may
exhibit an intense tendency in vitro for overlapping growth, with
loss of parallel cell growth and loss of contact inhibition (134,
142) (Figure 2). This property is also seen in normal skin
fibroblasts, but only if they are co-cultured under certain
conditions with HeLa cells (e.g. Figure 23). The present
experiments showed that both normal skin- and tumour-derived
fibroblasts change their characteristic properties stepwise during
their cell-cell interactions with HeLa cells. An adaptable
character for fibroblasts, compatible with the meaning of cell
plasticity (92, 157, 272, 273), entailing reprogramming of their
gene expression, protein synthesis and function, is thus also
revealed in the present cell-interaction model.

Differences between normal fibroblasts and CAFs
regarding proliferation, contact inhibition of growth, gene
expression and phenotypic profiles have been reported in
many studies (9, 43, 53, 135, 168, 274, 275). Stromal
fibroblasts ultimately acquire versatile properties that may be
supportive, inhibitory or definitively destructive for cancer
cells and their metastatic capacity (6-9, 46, 65, 80, 82, 92,
170, 186, 206, 213, 227, 251, 273, 276). Studies of in vitro
interactions between isolated fibroblasts and cancer cells may
therefore provide information on and explanations for their
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Figure 65. Apoptotic HeLa cells after 18 days of co-culture with LA-BC fibroblasts. Cytoplasmic blebbing and bi-nucleate cells are visible. Conditions
were as described in Figure 50. Giemsa, x140. Figure 66. Nuclear abnormalities of various fibroblasts co-cultured with HeLa cells revealed by Giemsa
staining. a: A nuclear constriction (arrow) frequently observed in all the stromal cell lines used. KA-BC fibroblasts and HeLa cells, x1000. b: Abnormal
nuclear shape of a KA-BC cell after 6 days of co-culture with HeLa cells, x1000. c: Fragmented nucleus of a TONS-F cell observed during the attachment
of a HeLa cell, x500. d: Nuclear fragmentation of an LA-BC cell (arrow) observed after 15 days of co-culture with HeLa cells, x100. e: Multinucleated
TONS-F cell (arrow) after 15 days of co-culture with HeLa cells. x120. Figure 67. a: Blockade of KR-BC fibroblasts in early-to-late prophase (G,-M)
after 18 days of co-culture with HeLa cells. Giemsa, x120. b: Higher magnification of the inset in Figure 67a: top right: HeLa metaphase with chromosome
non-disjunction; centre: two small HeLa cell fragments, left: multinucleated HeLa cell with abnormal nuclei; Four Gy-M fibroblast nuclei. x240.
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Figure 68. Early-to-late (G,-M) prophase nuclei of fibroblasts (KR-BC) after 18 days of co-culture with HeLa cells. Giemsa. a: Nucleus at early S-
G, phase x2000; b: early prophase nucleus with obvious nucleoli x1000; c: early prophase nucleus with nucleoli starting to fade x2000; d:
disappearance of nucleoli x2000; e: disappearance of nuclear membrane and clear appearance of nuclear chromosomal territories x2000. Figure
69. G,-M nuclei were ovoid (a, b) or exceptionally elongated, usually with a characteristic constriction (arrow) Giemsa, a, c: KR-BC fibroblasts and
HelLa cells; b, d: LA-BC fibroblasts and HeLa cells. a: x500, b: x1000; c¢: x500; d: x1500.

behaviour and function in the complex in vivo situation. The
present results show that fibroblasts from various origins
share common properties during the different stages of their
interactions with cancer cells.

Confluent fibroblasts, which cease to divide, are supportive
of cancer cell growth and are characterized as feeder layers,
usually pre-irradiated (277). Fibroblasts also cease to divide if
nutrient medium is not regularly renewed. Thus, the aim of
studying the in vitro interactions between cancer cells and
proliferating fibroblasts was justified and furthermore

supported by the fact that desmoplasia, as a characteristic
feature of most tumours, actually consists of early-initiated
fibroblast growth within the tumour microenvironment (9, 46,
51-55,64,79, 162, 278).

From the initial stages of their in vitro interactions, the
intense affinity between cancer cells and fibroblasts clearly
creates a topologically heterogeneous environment on the
glass culture surface, giving rise to the question whether
fibroblasts in contact with cancer cells acquire properties
different from those of fibroblasts growing or wandering far
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Figure 70. Autoradiography of a co-culture of HeLa cells with SH-TdR-pre-labeled G-EP fibroblasts. SH-TdR-G-EP (103 cells in 1 mL medium)
were cast over a monolayer of small (6-40 cells) HeLa-cell colonies and cultured for 15 h (a). There is no transfer of grains from the fibroblasts to
HelLa cells. Identical results were also obtained if 103 HeLa cells were mixed with SH-TdR-labeled fibroblasts before plating and cultured for 15 h
(b) or 15 days. Same results were obtained with AK, PG-M, SE-L, TONS-F and PL-BC cells. a: x500, b: x240. Figure 71. Autoradiography of a co-
culture of HeLa cells with 3H-UdR-pre-labeled G-EP fibroblasts. 3H-UdR-G-EP (103 cells in 1 mL medium) were cast over a monolayer of small
(6-40 cells) HeLa-cell colonies and cultured for 10 h (a). Extensive transfer of grains from a heavily labeled fibroblast to all the cells of the HeLa-
cell colony can be seen. x200. The same phenomenon was observed when HeLa cells were cast over a monolayer of SH-UdR-pre-labeled G-EP
fibroblasts and cultured for 10 days (b: x200). Figure 72. Autoradiography of a co-culture of SH-UdR-pre-labeled HeLa cells with SE-L fibroblasts.
HelLa cells (103 cells in 1 mL medium) were cast over a non-confluent monolayer of SE-L fibroblasts and cultured for 10 h. A HeLa cell has attached
to the side of a fibroblast and grains have already been transferred to the fibroblast, with a higher accumulation in the nucleoli. x200.

away. There is evidence that stromal cells adjacent to
tumours, stroma close to tumours, and stroma more than 15
mm from tumours display differentially-expressed genes
(279) and histological heterogeneity (71, 72). Additionally,
various other types of heterogeneity have been described (9,
43, 65, 82, 133, 135). Indeed, in our in vitro experiments,
both cell types first contacted side by side and then showed
intense proliferation and various changes in their protein
expression profile, dependent on their topology. This
phenomenon, involving active fibroblast locomotion,
proliferation, cell adhesion and contact guidance, is
reminiscent of biomechanical morphogenetic processes
during embryogenesis and organ formation (146, 147, 280).
Furthermore, it shows that the fibroblasts acquire functions
which are specific to their position. As can be seen from
Figures 11, 12, 13, 23, 24, 42, 61 and 64, in the course of
their interactions with HeLa cells, fibroblasts first
circumscribe HeLa-cell colonies, then actively proliferate and
finally cause the appearance of apoptotic foci, specifically at
the boundaries of HeLa-cell colonies. Thus, the present
results indicate the development of a restraining role of the
fibroblasts in cancer progression. The affinity of the
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fibroblasts for HeLa cells may be interpreted as an indigenous
property of all kinds of mesenchymal cells to provide a
supportive background for epithelial cells. On the other hand,
the intense proliferation of the HeLa cells located at the outer
edge of the colonies may indicate a feeding relationship (119)
or competition for nutrients (281). Indeed, in our model, it
was shown that the growth of HeLa cells at the periphery of
colonies is enhanced if the colonies are surrounded by
proliferating fibroblasts. This was shown by the expression of
Ki-67 proliferation antigen and of DHFR, an enzyme
associated with the de novo synthesis of amino acids and
nucleic acid bases in the S phase of the cell cycle (282, 283).
However, this friendly cooperation is reversed only a few
generations later, as evidenced by extensive disintegration
characteristics at the edges of the HeLa-cell colonies (Figures
48, 55,56, 57, 58, 61). This phenomenon may indicate the
capacity of certain fibroblasts to recognize the malignant cells
and to cause their destruction by apoptosis or mitotic
catastrophe (284) (Figures 43, 48, 55, 61, 62, 63, 64).
Despite, however, this aggressive effect exerted by the
fibroblasts, the HeLa cells managed to grow again and started
forming new colonies (Figures 57, 60, 62, 75).
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Figure 73. KR-BC fibroblasts and HeLa cell co-culture. An inoculum of 10°
KR-BC cells in 1 mL medium was cast over a monolayer of HeLa-cell
colonies (with 6-10 cells) and incubated for 17 days, with medium
replacement every 2 days. Dense growth of the fibroblasts, with long
projections and overlapping cells, foci of apoptotic HeLa cells, mini-cell
fragments, revival of HeLa cell growth and maintenance of some semblance
of the polygonal pattern of cogrowth is apparent. Giemsa, x40. Figure 74.
As in Figure 73, co-culture of KR-BC fibroblasts and HeLa cells for 18
days. The expansion of the fibroblast growth in the space previously
occupied by HeLa colonies is obvious. Giemsa, x40. Figure 75. Higher
magnification of the inset in Figure 74. Giemsa, x180.

The contact between fibroblasts and HeLa cells, in the
present study, was shown to be necessary for activating the
process of protein expression changes in both cell types.
Obviously, the overproduction of a specific protein (e.g. NSE,
DHFR, E-cadherin) should require the overexpression not only
of the specific gene but also of the series of genes involved in
the provision of all necessary elements for the synthesis of that
specific protein. Thus, such ‘activated’ cells should be
expected to exhibit increased metabolic and transcriptional

activity (285) and intense protein synthesis, being evident by
their intense cytoplasmic basophilia and argyrophilia (Figures
42,43,55,56). Cytoplasmic silver staining in these interaction
experiments reflects an increased transcriptional activity for
proliferative and functional needs of the cells (286, 287).
Silver staining was sensitive in detecting material that could
not be demonstrated by Giemsa, e.g. the long strongly
argyrophilic fibroblastic projections. Nevertheless, basophilic
and argyrophilic cytoplasm, as shown by Giemsa and silver
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staining, respectively, means that the cell is actively producing
proteins. It should be mentioned that numerous proteins
associated with many fibroblastic functions are argyrophilic
(such as fibronectin type III, collagen, and ribosomal proteins).
Additionally, protein synthesis in the fibroblasts may be
assisted by frequent replacement of the medium and through
direct cell-cell communicative exchanges of large and small
molecules with HeLa cells (80, 119, 288-290). Moreover, this
process may assist in the synthesis of specific proteins. The
fast transportation of free H-UdR from fibroblasts to HeLa
cells shows active metabolic cooperation between the two cell
types for RNA synthesis. The contribution of the frequent
replacement of the medium to the process of alteration of
protein expression in the fibroblasts is evident since
interruption of nutrient supply results in fibroblasts changing
to a non-proliferating state where they are used just as a feeder
layer by HeLa cells (Figures 5, 6, 7). Consequently, these
fibroblasts, i.e. CAFs, that may or may not express a-SMA
(291), can only serve as fodders for the cancer cells. It is
interesting to note that suppression of a-SMA in stromal cells
resulted in suppression of breast cancer metastasis in vivo
(292). The feeding role of CAFs may also be supported by
their properties, to express mainly genes of structural proteins
(25,29, 68, 86, 87, 129, 293), to be located in areas of cancer-
cell proliferation such as the invasion front (53, 82) and to
preselect and prepare a tissue to accept metastatic cancer cells
(169, 270, 276, 294).

All these observations are compatible with the supportive
nature of CAFs, however, they do not exclude or diminish the
notion of stromal fibroblasts potentially becoming aggressive
against cancer cells, opposing or destroying them. There are
indeed numerous examples of such a spectrum of effects of
fibroblasts against cancer cells, both in vitro and in vivo, as
described in the Introduction. On the other hand, the tumour
microenvironment is a region of ambiguous, positive and
negative responses to various factors e.g. IL-6 (295).

The expression of E-cadherin in the periphery of HeLa cell
colonies surrounded by fibroblasts for 11 days or longer in this
study (Figure 44) suggests a direct regulation of E-cadherin
by the fibroblast interaction. This may indicate alterations of
epithelial barrier permeability and cellular-junction properties,
as previously shown by the modulation of the expression of
E-cadherin in cancer cells by fibroblasts in several co-culture
systems (296-300). E-Cadherin is not expressed in several
types of tumours but its expression may be associated with
suppression of tumour growth (301). The involvement of
E-Cadherin in tumourigenesis, metastasis and tumour
suppression is a complex phenomenon, varying among
different cell types and tissues (302-304). Remarkably,
remodeling of stromal-specific proteins and E-cadherin
expression in the epithelioid cells of benign prostate
hyperplasia has been shown to facilitate the transfer of
epithelial-secreted proteins to the stroma (305).
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The production and release of lipid droplets by the dense
fibroblast layers surrounding the HeLa-cell colonies is a
novel finding. Although the function of lipids in cancer
remains unclear, they evidently play a significant role in
cancer progression (306, 307). Adipogenesis is related to
fibrosis, and the interconversion between stromal
fibroblasts and adipocytes is involved in carcinogenesis
(308, 309). Furthermore, adipocytes contribute to breast
cancer invasion (310). From our experiments, it may be
suggested that, during their close interaction with HeLa-
cells, fibroblasts produce lipids in their cytoplasm that are
finally released and accumulate on their upper cell surface
(Figures 50, 51, 54).

The apoptotic features observed at the border of HeLa-cell
colonies after ~10 days in co-culture with fibroblasts clearly
constitute an effect of the bidirectional communication and
interactions between the two cell types in contact since
conditioned medium did not induce these cytotoxic effects (6,
119, 186). The presence of foci with many multinucleated HeLa
cells possibly indicates that in these particular areas, close to
the edge of HeLa colonies, as well as to the dense fibroblast
bow, specific factors affect the process of mitosis leading to
incomplete telophase without cytoplasmic division. This view
is supported by the high frequency of nuclear abnormalities
observed in HeLa cells in the present study, and also by the
nuclear atypia in cancer cells surrounded by CAFs (311).

NSE consists of a large group of hydrolytic enzymes with
variable staining intensity in different cells and tissues (312).
They may present peculiarities in staining due to their
sensitivity to pH, osmolarity and fixation method (313, 314).
NSE is localized in the cytoplasm, with diffuse staining, or in
lysosomes, with spherical droplet staining (313, 315). Since
carbonic anhydrase (CA), an enzyme ubiquitously-expressed
in almost all cells (265, 316, 317), is abundantly stained with
the NSE reaction used, it was necessary to use acetazolamide,
a specific inhibitor of CA, so that true NSE expression could
be revealed (263, 264, 314). NSE was used as a general
marker to show that most probably a very wide range of
proteins are produced by the encircling fibroblasts during their
interactions with HeLa cells, as also shown by the intense
silver staining. It should be noted that CA and specific
esterases have been suggested to play a role in cancer
progression (316-318).

The blockade of the fibroblasts at the G,-M phase of the
cell cycle, after only 17 days in co-culture with HeLa cells,
shows a time-dependent effect on the nuclear membrane,
nucleolus and chromatin organization of the fibroblasts. The
importance of the observation of such nuclear features has
been stressed for cancer cells (319-321), but never before for
fibroblasts following their interaction with cancer cells in vitro
or in vivo. The separation of the chromosomes in nuclear
regions relates to gene expression and gene expression
changes in transcriptional activity (319, 322). The possible
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involvement of TGF-f signaling in this phenomenon (323),
leading to alterations within the tumour microenvironment,
should be further investigated.

The above discussion points to an indigenous common
property of fibroblasts: namely a remarkable adaptability
through the selective expression of certain proteins, thus
facilitating specific functions under certain environmental
conditions or under the influence of specific signaling. This is
well-supported by many studies (45, 102, 105, 117, 324-329).
Therefore, it could be postulated that the tumour fibrovascular
stroma consists of many heterogeneous subpopulations of
fibroblasts at different stages of proliferation and with a wide
spectrum of alterations in protein expression (329, 330),
whatever their designation is considered to be (CAFs, TAFs,
myofibroblasts, mesenchymal stromal cells, mesenchymal
stem cells, stromal fibroblasts, etc.). The phenomenon of the
epithelial-mesenchymal transition and the involvement of
other cell types were not included in this discussion.

Considering their strong affinity for cancer cells (119, 331,
332), as well as their various functions within the tumour
microenvironment, mesenchymal cells have recently emerged
as potential therapeutic targets or means against cancer (77,
104, 113, 153, 222, 333-342).

Enriching our knowledge on the in vitro and in vivo
interactions of cancer cells with other tumour micro-environment
cellular elements, and using new methodologies, such as delicate
3D culture (147, 249, 343-346), will be particularly useful for a
more accurate simulation of the in vivo situation, allowing the
mechanisms of specific interactions to be elucidated.

Conclusion

The protein-expression patterns of both fibroblasts and
HeLa cells in in vitro co-culture depend on the topology,
cell-to-cell contact, cell-to-cell ratio, duration of their
interaction and avoidance of disruption of proliferating
capacity of the fibroblasts due to contact inhibition or
nutrient deprivation. Interactions of the two cell types
gradually lead to changes in their growth and survival
patterns. Fibroblasts develop a remarkable pattern of
overgrowth around HeLa-cell colonies, express NSE, show
intense silver staining and development of a complex
network of long highly basophilic-argyrophilic projections,
and produce lipids. At this stage, the signs of overgrowth of
HeLa cells at the boundaries of HeLa-cell colonies give way
to signs of apoptosis with gradually increasing detachment
of HeLa cell groups.

It is certain that the co-culture of fibroblasts and HeLa cells
in vitro produce a series of interactions, starting with
acquaintance and mutual affinity, continuing with
communication and effects on each other’s protein expression
and ending with a fight for survival. The important prerequisite
for these observations is the enabling of fibroblast proliferation.

The present results justify an in-depth investigation of the
conditions under which the flexible and industrious nature of
fibroblasts can be manipulated in such a way that these cells
can be utilized against cancer cells in vivo.
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