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Abstract. Background/Aim: Novel agents such as
lenalidomide and bortezomib have significantly improved
today’s therapy of multiple myeloma. Despite recent
innovations, new therapeutic options are needed. The
Wingless-related integration site (WNT) pathway is
aberrantly activated in lymphoma and myeloma and
therefore renders WNT signaling molecules attractive for the
development of targeted therapies. Flunarizine was used in
this study as it has chemical features similar to those of other
known WNT inhibitors and already proven proapoptotic
properties in leukemia cells. Materials and Methods: The
antitumor apoptotic effect of flunarizine at doses ranging
Sfrom 0.1-200 uM was investigated on three human lymphoma
cell lines, one murine and four human myeloma cell lines by
3’3-Dihexyloxacarbocyanine iodide and propidium iodide
staining in flow cytometry. Results: Flunarizine induced
significant apoptotic activity in all tested myeloma and
lymphoma cell lines in a dose-dependent manner.
Conclusion: Our results reveal a significant selective
induction of apoptosis by flunarizine and suggest an in vivo

effect against lymphoma and myeloma.

Multiple myeloma (MM) is a hematological neoplasia of
post-germinal center B-lymphocytes, with an accumulation
of malignant plasma cells in the bone marrow, and mostly
occurs with monoclonal protein being present in either
peripheral blood or urine. A delayed diagnosis due to
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nonspecific clinical symptoms, particularly during the onset
of the disease, is often seen in patients suffering from MM
(1). Bortezomib, lenalidomide and thalidomide significantly
improved treatment outcome and patient survival over the
past decade, but most patients might still experience disease
relapse, emphasizing the need for innovative treatment lines.

Wingless-related integration site (WNT)/f-catenin
signaling represents an interesting target in cancer therapy
as it is involved in apoptosis induction, differentiation and
regulation of cell proliferation. Thus, aberrant activation of
the WNT signaling pathway contributes to oncogenic effects
(2-6). A pivotal role is played by [-catenin as a downstream
effector in the canonical WNT signaling pathway. When
WNT ligands are lacking, the cytosolic fraction of -catenin
forms a destruction complex comprising axin, adenomatous
polyposis coli, casein kinase and glycogen synthase kinase-
3f (GSK3p). This destruction complex is responsible for
the phosphorylation of cytosolic PB-catenin, which is
subsequently ubiquitinated by cellular (3-transducin repeat-
containing proteins and thereafter degraded by the
proteasome (7). Binding of secreted WNT ligands to
Frizzled receptors and the co-receptor low density
lipoprotein receptor-related protein 5, or 6, induces
increased phosphorylation of the cytoplasmatic adaptor
protein Disheveled that inhibits GSK3p activity and thereby
causes accumulation of stable P-catenin. Non-
phosphorylated B-catenin translocates into the nucleus to
interact with lymphoid enhancer-binding factor and T-cell
factor, which induces the transcription of WNT target genes
such as ¢cMYC and cyclin D1 (5, 6). As the inhibition of the
WNT signaling pathway results in suppression of MM
progression, influencing WNT signaling might represent a
promising therapeutic approach (8-13).

In our previous studies we confirmed that ethacrynic acid
(EA), ciclopirox olamine (CIC), piceatannol and piroctone
olamine (PO) inhibit the WNT/B-catenin pathway and might
be effective in the therapy of various types of cancers,
especially hematopoietic types (14-24).
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Figure 1. Structural formula of flunarizine.

Recently, we showed a chemical analog of flunarizine {1-
[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenylprop-2-en-1-
yl]piperazine}, cinnarizine, to be an effective inducer of
apoptosis in hematological malignancies (25). Structural
formulae of flunarizine and cinnarizine are shown in Figures
1 and 2, respectively. Flunarizine is also distantly related to
CIC and PO. Thus, here we investigated its cytotoxic
potential on myeloma and lymphoma cells.

Materials and Methods

Cell lines and culture conditions. Cell lines were obtained from
Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ, Braunschweig, Germany) or the American Type Culture
Collection (ATCC-LGC Standards, Wesel, Germany) and incubated
at 37°C with 5% CO, and at 90% humidity.

The human myeloma cell lines KMS 18, OPM-2, RPMI-8226 and
U-266 (all from DMSZ) were cultured in RPMI-1640 medium (PAA,
Pasching, Austria), supplemented with 5% heat-inactivated fetal calf
serum (FCS; Invitrogen, Darmstadt, Germany) and 1%
penicillin/streptomycin (Seromed, Jiilich, Germany). The human
lymphoma cell lines Oci Ly 8 Lam 53, Raji and SU DHL 4 were
cultured under identical conditions as human myeloma cell lines.
MPC-11 (ATCC) is a murine plasmocytoma cell line. Cells were
cultured in RPMI-1640 medium supplemented with 5% heat-
inactivated FCS and 1% penicillin/streptomycin. The human colon
fibroblast cell line CCD-18Co was obtained from the ATCC (LGC
Standards) and cultured in ATCC-formulated Eagle’s Minimum
Essential Medium (LGC Standards) supplemented with 15% of heat-
inactivated FCS and 1% penicillin/ streptomycin. Cells were
harvested by using 0.05% trypsin-EDTA solution (Invitrogen),
centrifuged at 1,200x g for 7 min and suspended in 1 ml medium to
determine the cell count. The medium was renewed every three days.

Drugs and chemical reagents. Flunarizine was used in this study.
Flunarizine was purchased from Sigma-Aldrich (Steinheim,
Germany) and tested at different concentrations for 72 h.

3’3-Dihexyloxacarbocyanine iodide (DiOC6) and propidium iodide

(PI) staining. Reduced mitochondrial transmembrane potential is
known to occur late in the apoptotic process. We used DiOC6
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Figure 2. Structural formula of cinnarizine.

staining and flow cytometry to assess the mitochondrial
transmembrane potential. Therefore, 1x105 cells were plated in
3 ml medium in 6-well plates. Flunarizine was dissolved in dimethyl
sulfoxide (DMSO) (Invitrogen) and added to the medium at an
optimized concentration for three days. Staining with DiOC6 for
detecting viable cells and with PI, which binds to DNA in necrotic
cells, was used for the apoptosis assay, measured by a fluorescence-
activated cell sorter (FACS).

The medium containing drug-treated cells was transferred from
each well into a glass tube. Then cells were centrifuged at 800x g
for 7 min, washed with phosphate buffered saline (PBS, pH 7.4)
(Roti-Stock 10x, purchased from CarlRoth, Karlsruhe, Germany)
and stained after repeated centrifugation by adding 500 pl staining
solution (RPMI-1640, 0.5% bovine serum albumin [BSA], 80 nM
DiOC6) for 15 min at 37°C. After another washing step with
PBS/1% BSA, cells were re-suspended in 500 ul PBS/1% BSA.
FACS analysis was performed immediately after the addition of 5
ul PI solution (100 pg/ ml) with a BD FACSCanto (BD Biosciences,
Heidelberg, Germany) flow cytometer. Approximately 10,000 counts
were made for each sample.

In this assay, viable cells show high fluorescence intensity for
DiOC6 and a low fluorescence for PI. Necrotic cells fluoresce in an
opposite manner, with high intensity for PI and a low intensity for
DiOC6. Apoptotic cells show low fluorescence for both DiOC6 and
PI. Cells with high fluorescence intensity for both DiOC6 and PI
correspond either to debris or apoptotic bodies.

Statistical analysis. Values are given as meanzstandard deviation (SD).
At least three separate and independent experiments were performed
with each cell line. Student’s #-test was used for statistical analysis. A
p-value of less than 0.05 was considered significant.

Results

Titration of flunarizine. We determined the optimal
concentrations of flunarizine which led to a significant decrease
in viability of myeloma and lymphoma cells. As controls CCD-
18Co colon fibroblasts were investigated by FACS analysis.
The mean 50% inhibitory concentration (ICs) after 72 h was

detected by titration. ICs values of flunarizine employed after
72 h of incubation are given in Table I.
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Table 1. Inhibitory concentration (ICs) of flunarizine for human and
murine lymphoma, multiple myeloma and control cell lines. CCD18-Co
cells served as controls. A total of 1x10° cells were cultured with
different concentrations of flunarizine for three days. Cell viability was
measured by 3’3-Dihexyloxacarbocyanine iodide and propidium iodide
staining. Results represent the mean of data from three independent
experiments each.

Cell line Flunarizine IC5 (uM)
KMS 18 36 uM
OPM 2 29 uM
RPMI 8226 39 uM
U 266 35 uM
MPC 11 38 uM
Oci Ly 8 Lam 53 37 uM
Raji 25 uM
SU DHL 4 55 uM
CCD18-Co 76 uM

Effect of flunarizine on viability of human and murine
myeloma cells. The viability of all tested human myeloma
cells was affected by flunarizine. Administered concentrations
of flunarizine starting from 50 uM significantly reduced the
viability of myeloma cells in a concentration-dependent
manner. Concentrations necessary to induce apoptosis of
murine MPC-11 myeloma cells were comparable to those
needed for human myeloma cells. Flunarizine at 38 uM
triggered apoptosis of approximately 50% of MPC-11 cells.
All results are shown in Figure 3. Figure 5 summarizes the
significant decrease in viability after exposure to 50 uM
flunarizine. Figure 6 A shows the corresponding flow
cytometry results.

Effect of flunarizine on viability of human lymphoma cells.
Exposure to flunarizine also strongly reduced lymphoma
cell viability and triggered a significant selective induction
of apoptosis in all tested cell lines. The ICs, values for Oci
Ly 8 Lam 53 and Raji lymphoma cells were 35 uM and 25
uM, respectively. SU DHL 4 lymphoma cells were least
susceptible to the toxicity of flunarizine; at least 55 uM
flunarizine was required to reduce their viability to a level
of 50% (Figure 4). Figure 5 summarizes the significant
decrease in viability of cell lines after exposure to 50 uM
flunarizine. Figure 6 B presents the respective flow
cytometry results.

Effect of flunarizine on viability of healthy controls. We
chose CCD-18Co colon fibroblasts in order to analyze the
toxicity of flunarizine towards healthy cells. CCD18-Co cells
tolerated high doses of flunarizine as concentrations of more
than 50 uM were required for a significant induction of
apoptosis. Results are shown in Figures 3-5.
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used as healthy controls. Cells were cultured with flunarizine for three days. Viability was measured by 3’3-Dihexyloxacarbocyanine iodide and propidium iodide staining using flow cytometry.

Figure 3. Effect of flunarizine on viability of KMS-18, OPM-2, RPMI-8226, U-266 and MPC-11 human and murine myeloma cells and CCD-18Co colonic fibroblasts. CCD-18Co cells were
Data are shown as the mean+SD of experiments performed in triplicate. *p<0.05 compared to untreated cells.
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Figure 4. Effect of flunarizine on viability of Oci Ly 8 Lam 53, Raji and SU DHL 4 human lymphoma cells and CCD-18Co colon fibroblasts. CCD-
18Co cells were used as healthy controls. Cells were cultured with flunarizine for three days. Viability was measured by 3’3-Dihexyloxacarbocyanine
iodide and propidium iodide-staining using flow cytometry. Results represent data from three independent experiments. Data are shown as the

mean=SD. *p<0.05 compared to untreated cells.
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Figure 5. Flunarizine at 50 uM significantly reduced the viability of all tested human and murine lymphoma and myeloma cell lines. However, the
viability of CCD18-Co cells which served as controls was not significantly reduced. Cells were cultured with flunarizine for three days. Viability was
measured by 3’3-Dihexyloxacarbocyanine iodide and propidium iodide staining using flow cytometry. Results represent data from three independent
experiments. Data are shown as the mean+SD. *p<0.05 compared to untreated cells.

Discussion

MM represents a malignant neoplasm of plasma cells caused
by frequent gene mutations with or without chromosomal
translocations (26). In light of the latest research, therapy is
based on high-dose chemotherapy, following hematopoietic
stem cell transplantation (27-29). Despite several therapy
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innovations, the introduction of new pharmaceutical agents
is still warranted as MM currently remains incurable with
current chemotherapeutic treatment approaches (1).
Targeting the WNT signaling pathway might become a
promising treatment approach since WNT signaling
represents a perfect example of abrogated signaling pathways
in MM (8-13). Recent studies confirmed that WNT ligands
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Figure 6. Exemplary results generated by flow cytometry. Within the quarters the relative number of cells is given in percentages. KMS-18, U-266,
SU DHL 4 and Raji cells were treated with flunarizine at different concentrations. Seventy-two hours after incubation, flow cytometry was performed.
(A) Myeloma cells before and after treatment with flunarizine. (B) Lymphoma cells before and after treatment with flunarizine.

induce enhanced proliferation of MM cells, and inhibition of
WNT/B-catenin signaling suppresses MM growth (30-33).
Hence, current MM therapy might be improved by the
implementation of innovative WNT inhibitors.

We recently demonstrated that treatment with PIC, EA,
CIC and PO significantly reduced proliferation of lymphoma

and myeloma cells in vitro by influencing WNT signaling
through targeting either (3-catenin itself or its downstream
factors. Subsequent in vivo studies revealed the potential of
EA, CIC and PO as they significantly reduced tumor growth
and prolonged overall survival duration in myeloma-bearing
mice (14-24, 34). More recently, we proved cinnarizine to be
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effective in the treatment of hematological malignancies
(25). These promising effects on both cancer cell survival
and WNT signaling made it tempting to determine whether
flunarizine, which is an analog of cinnarizine and distantly
related to CIC and PO, exhibits any cytotoxic effects towards
MM and lymphoma cells.

Flunarizine is a selective calcium entry blocker with
calmodulin-binding properties and histamine H1-blocking
activity. It was first synthesized by Janssen Pharmaceutica
in 1967 as a derivative of piperazine. Flunarizine is
commonly used in the prophylaxis of migraine, occlusive
peripheral vascular disease, vertigo of central and peripheral
origin, and as an adjuvant in the therapy of epilepsy. In
contrast to its chemical analog cinnarizine, it has a long
plasma half-life and is administered only once a day. Animal
studies revealed that high single doses of flunarizine are
well-tolerated in adult rats, mice, guinea pigs, and dogs of
both sexes as there is a wide safety margin. Daily oral doses
of up to 20 mg/kg for three months did not produce any
significant toxicity (35).

Previous in vitro studies already showed that the efficacy
of chemotherapy was significantly enhanced when
flunarizine was combined with common chemotherapeutic
agents. Interestingly, this effect was also observed in drug-
resistant neoplasms as flunarizine enhanced the activity of
melphalan against drug-resistant rhabdomyosarcoma,
positively modulated doxorubicin-resistance in multidrug-
resistant human colonic adenocarcinoma cells, and slightly
enhanced the sensitivity of multidrug-resistant primary
human renal cell carcinomas towards treatment with
vinblastine (36-38). Additionally, flunarizine treatment
inhibited the in vitro migration of melanoma cells, and the
growth rate and survival fraction of B16 murine melanoma
cells (39, 40). Combined treatment with vincristine
enhanced intracellular levels of vincristine in melanoma-
bearing mice and significantly prolonged the median
survival of the animals as compared with controls, which
were solely treated with vincristine (41). Dose-dependent
growth inhibition of prostate cancer cells was also observed
(42). It was recently confirmed that flunarizine induces
caspase-10-dependent apoptosis of Jurkat T-leukemia cells,
but not of breast or colon carcinoma cells. Flunarizine
treatment also resulted in production of reactive oxygen
species, dissipation of mitochondrial transmembrane
potential, release of cytochrome ¢ from mitochondria, and
caspase-9 activation. Moreover, no significant toxicity
towards healthy cells was observed (43).

These underlying apoptotic mechanisms of flunarizine
emphasize its anti-carcinogenic potential, particularly for
hematological malignancies. Our results corroborate these
findings for lymphoma and MM as our data indicate that
flunarizine significantly influences the proliferation of cells
of hematological malignancies by selective induction of
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apoptosis. We observed that flunarizine treatment induced
apoptosis in all tested myeloma and lymphoma cell lines.
Human and murine cells were equally affected and
comparable flunarizine concentrations were sufficient for
apoptosis induction. Doses of approximately 35 uM
reduced cell viability by 50% in most myeloma and
lymphoma cell lines. However, SU DHL 4 lymphoma cells
tolerated higher doses of flunarizine. Interestingly, CCD-
18Co colonic fibroblasts, which served as healthy controls,
tolerated higher doses of flunarizine as doses lower than
100 uM did not significantly influence viability, thus
suggesting a favorable tolerability of flunarizine concerning
healthy tissues.

Taken together, flunarizine exhibits selective toxicity
towards lymphoma and MM cells and might also interfere
with WNT signaling or other associated pathways due to its
chemical relationship to other known WNT inhibitors.
Hence, flunarizine might represent a sustainable anticancer
drug and further in vitro and in vivo experiments are
warranted.
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