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The Roles of ZFAT in Thymocyte Differentiation and
Homeostasis of Peripheral Naive T-Cells
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Abstract. ZFAT (zinc-finger gene in AITD susceptibility
region), originally identified as a candidate susceptibility gene
for autoimmune thyroid disease, has been reported to be
involved in various cellular processes and several common
diseases including multiple sclerosis. Recent studies revealed
that mouse Zfat is a novel critical regulator for both thymocyte
differentiation and peripheral T-cell homeostasis. Zfat
deficiency at early thymocyte developmental stages results in
the inhibition of the development of CD4*CDS8* thymocytes
with an impaired positive selection. Zfat deficiency in
peripheral T-cells results in a reduction in the number of T-
cells with decreased expression of the interleukin-7 receptor-
a (IL-7Ra) that is critical for T-cell homeostasis. In addition,
T-cell antigen receptor stimulation-induced responses of Zfat-
deficient T-cells are also impaired, with reduced IL-2Ra
expression. This review highlights and discusses the roles of
Zfat in thymocyte differentiation of T-cells and in the
homeostasis of naive T-cells with recent work.

We previously identified zinc-finger gene with AT-hook/zinc-
finger gene in autoimmune thyroid disease susceptibility region
(ZFAT) as a candidate susceptibility gene for autoimmune
thyroid disease (1). ZFAT encodes an evolutionally-conserved
protein with 18 zinc-finger motifs and one AT-hook domain (2).
The ZFAT protein is strongly expressed in T- and B-cells in
immune-related tissues including the thymus, the spleen, lymph
nodes and peripheral blood (2). We reported that Zfar deficiency
in the mouse (Zfar~) is embryonically lethal by embryonic day
8.5 and that Zfat is a critical transcriptional regulator for 7all
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(T-cell acute lymphocytic leukemia protein 1), Gatal (GATA-
binding factor 1) and Lmo2 (LIM domain only 2) expression in
primitive hematopoiesis (3, 4). We also found that ZFAT is
involved in the regulation of apoptosis in a human leukemia cell
line (MOLT-4) (5) and mouse embryonic fibroblasts (6), and in
the differentiation of human umbilical vein endothelial cells (7).
Furthermore, genetic variants of ZFAT have been reported to be
associated with the severity of Hashimoto’s disease (8), with
adult height in Japanese and Korean populations (9, 10), and
with several common diseases including hypertension and
cancer (11, 12). Of interest is that a genetic variant of ZFAT is
reported to be most strongly associated with interferon-3
responsiveness in multiple sclerosis (MS) (13), in which
interleukin-7 receptor-a. (IL7RA) and IL2RA are susceptibility
genes (14-16). Recent studies have shown that ZFAT is a novel
imprinted gene expressed in the human placenta (17), and was
also reported to be overexpressed in unruptured aneurysms,
suggesting that ZFAT could be a possible molecular marker in
peripheral blood to predict a high risk of aneurysm rupture (18).
The functional roles of ZFAT in biology and genetics have
expanded dramatically since its identification and cloning. In
our recent studies, we established and analyzed Zfatf/ f LckCre
mice and Zfatf/ f.Cd4Cre mice, and we found that Zfat is
essential for both thymocyte development and peripheral T-cell
homeostasis through Erk activation and the expression of I17ra
and I12ra, respectively (19, 20). Herein, we review the function
of Zfat and discuss recent research regarding the signaling
factors that control positive selection in thymocyte development,
and the cytokine receptors and autoimmune diseases involved
in the homeostasis of naive T-cells.

The Role of Zfat in Thymocyte Differentiation
In the thymus, signals transduced by the T-cell antigen
receptor (Tcr) promote the transition of CD4*CD8* double-

positive thymocytes to CD4*CD8~ single-positive and
CD4~CD8* single-positive thymocytes, and also regulate CD4
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Figure 1. Model of Zfat function in thymocyte differentiation. Thymocyte differentiation is described based on the pattern of cell surface markers
expressed at each stage. Double-negative (DN) cells are divided into DN1, DN2, DN3 and DN4 stages. DN4 cells differentiate into double-positive
(DP) cells expressing both CD4 and CD8. The expression of mature a/f3 Tcr by the re-arrangement of Tcra gene leads to the process of positive and
negative selection, ensuring a diverse repertoire of T-cells. DP cells that have undergone positive selection differentiate into CD4 single-positive
and CDS8 single-positive cells. Zfat expression during the thymocyte development begins from the DN3 stage. Zfat deficiency in thymocyte development
results in the inhibition of DP thymocyte development with impaired positive selection, indicating that Zfat is essential for the development of DP

thymocytes.

versus CD8 lineage commitment (21, 22). In the transition of
DP to SP thymocytes, transcriptional factors, including Gata3
(23), Tox(Thymocyte selection-associated high mobility group
box) (24), Egrl (Early growth response protein 1) (25) and c-
Myb (V-myb avian myeloblastosis viral oncogene homolog)
(26), are critical for positive selection, but not for CD4 versus
CD8 lineage commitment. However, the precise molecular
mechanisms and the orchestrated gene expression programs in
T-cell development are not yet fully-understood. In our study,
we generated Zfar”'-LckCre mice and observed that they
exhibited a loss of CD3C phosphorylation with dysregulation
of Erk(extracellular signal-regulated kinase) and Egr activities,
leading to impaired positive selection. We demonstrated that
Zfat is required for the proper regulation of Tcr proximal
signaling, and that Zfat is a crucial molecule for positive
selection in the thymus (Figure 1).

The T-cell repertoire is whittled-down by negative
selection, which abolishes T-cells with Tcrs that recognize
self-peptides and major histocompatibility complex proteins
(self-pMHC) with high affinity, and by positive selection,
which requires T-cells with Tcrs that recognize self-pMHC
with low affinity. The Tcr signaling pathway can be divided
into proximal signaling, Ras(Rat sarcoma viral oncogene
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homolog)-mitogen activated protein kinase (Mapk) signaling
and calcium-mediated signaling (Figure 2). The
phosphorylation of Erk1/2 induced by TCR-stimulation
through Ras-Mapk signaling was markedly decreased in
Zfatf/ f_LckCre thymocytes. In agreement with the defects in
Erk1/2 activation, the phosphorylation of both Mek1/2 and
c-Raf(V-Raf-1 murine leukemia viral oncogene homolog 1),
which are located upstream of the Erk signaling pathway,
was also reduced in the Zfazf/f—LckCre thymocytes. The
phosphorylation of Zap70 (Zeta-chain-associated protein
kinase) and Plcyl (Phospholipase C, gamma-1) was also
diminished in Zfar"*-LckCre thymocytes. Finally, the Ter
stimulation-induced phosphorylation of CD3C, which is
proximal signaling, was virtually ablated in the Zfatf/f—
LckCre thymocytes, and phosphorylated CD3C at non-
stimulated status was also apparently diminished due to the
Zfat deficiency (Figure 2). By responding to changes of
pMHC, the Tcr signal strength provides the effects on
signaling mechanisms for positive selection and negative
selection during development. The protein schnurri-2 (Shn2;
also known as Hivep2) has been reported to be a critical
regulator of T-cell development controling the balance
between death and differentiation by modulating the Tcr
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Figure 2. Impaired Tcr signaling pathways coursed by Zfat deficiency. The Tcr signaling pathway can be divided into three pathways: proximal
signaling, Ras-mitogen activated protein kinase (Mapk) signaling and calcium-mediated signaling. The recognition of pMHC ligands by Tcr leads
to signaling cascades. Zfat deficiency in thymocyte development results in a loss of CD3C phosphorylation with dysregulation of Erk and Egr
activities, leading to impaired positive selection. Deregulated phosphorylation by Zfat deficiency is indicated by open arrows.

signal strength (27). In addition, thymocyte-expressed
molecule involved in selection (Themis) was reported to set
the signal threshold for positive and negative selection in T-
cell development (28). Further studies are required to
establish the roles of Zfat in the modulation of the Tcr signal
strength for both positive and negative selection.

We further explored the relevance of Zfat in positive
selection, but not in the lineage commitment processes during
T-cell development. Gata3, Tox, Egrl and c-Myb are critical
for positive selection, and the positive selection signals are
thought to result in up-regulation of Egrl (21). The induction
of mRNA of Egrl, Egr2 (29, 30) and Egr3 (31) by Tecr
stimulation was impaired in the DP thymocytes of Zfar'/!-
LckCre mice. Egr transcriptional factors including Egrl, Egr2
and Egr3, contain highly conserved zinc-finger DNA-binding
domains that can bind a number of common target gene
promoters (32). Egr proteins are central players in the
development of thymocytes, and have both redundant and
distinct roles in positive selection (25, 29-31). Thus, our

results collectively suggest that Zfat is involved in positive
selection, in part, through the regulation of the expression of
Egrl, Egr2 and Egr3. However, the possibility that the
decreased Egr expression in Zfatf/f-LckCre double-positive
thymocytes simply reflects the reduced number of positive-
selected thymocytes cannot be excluded. A full understanding
of the precise mechanisms of Zfat function in positive
selection and thymocyte development awaits future studies,
which will lead to a better understanding of the orchestrated
gene expression programs in T-cell development.

The Role of Zfat in the Homeostasis of Naive T-Cells

In peripheral lymphoid tissues, proper regulation of T-cell
homeostasis is highly controlled by both cell-extrinsic and
cell-intrinsic  factors (33-36). Accumulating evidence
demonstrates that peripheral T-cell homeostasis is controlled
by cytokine receptor-mediated signals, especially I17r, as well
as by interaction between Tcr and MHC (37, 38) (Figure 3).
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Figure 3. Models of Zfat functions in peripheral T-cell homeostasis and immune response. Naive T-cells receive continuous Tcr signals by interaction
with low-affinity self-peptide MHC ligands on antigen-presenting cells (APCs). Continuous Tcr signals together with 117 signaling in naive T-cells
leads to cell survival. In contrast, Tcr signaling induced by high-affinity foreign-peptide MHC ligands results in the activation of T-cells during
immune responses. Cd4-Cre-mediated Zfat deficiency results in a reduction in the number of peripheral T-cells with decreased expression of 1l7ra.
In addition, the Tcr stimulation-induced responses of Zfat-deficient T-cells are also impaired, with reduced 112ro. expression. These results collectively
indicate that Zfat plays important roles in peripheral T-cell homeostasis and immune response through the regulation of ll7ra. and 112ra.

112/112r has a broad array of actions, including the ability
to drive T-cell proliferation, mediate activation-induced cell
death, promote the development of regulatory T-cells and
modulate the expression of cytokine receptors (39, 40). I12r
has three chains: o, 5 and the common cytokine receptor 7.
Resting T-cells express a receptor form composed of - and
v-chains that bind 112 with moderate affinity, whereas the
activation of T-cells induces the o-chain (a high-affinity
subunit; CD25) and the formation of the high-affinity
heterotrimeric receptor, which plays a critical role in immune
response of T-cells (41). In addition, the I17r complex is
composed of I17ro and the y-chain, and I17 signaling is
mainly regulated by I17ra expression in T-cells (42). Genetic
variants and several haplotypes in the human /L2RA gene
have been reported to be associated with type-1 diabetes and
MS (14). Furthermore, the JIL7RA gene is also a
susceptibility gene for MS (15, 16, 43), and IL7 was recently
reported to be involved in the generation of T-helper 17
(Tyl7) cells, a subset of IL17-producing CD4* T-cells
required for the initiation of autoimmune disorders (44, 45).

Several molecules, including forkhead box-O class
transcriptional factors (Foxo) (46), Runx (47) and the KIf
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family (48), are reported to play critical roles in peripheral
T-cell homeostasis as cell-intrinsic factors. Foxo plays
important roles in various cellular processes and a wide
variety of diseases (36, 49-52). In the immune system, Foxol
and Foxo3 are predominantly expressed (49, 53), and Foxol
critically regulates the expression of I17ra (46, 54). However,
the cell-intrinsic factors responsible for the integration of
extrinsic signals have not been fully elucidated. In our study,
Cd4-Cre-mediated Zfat-deficiency resulted in a remarkable
reduction in the number of peripheral T-cells with a
decreased expression of Il7ra, and in an impaired Ter
stimulation-induced response of T-cells with a reduced I12ra
expression (Figure 3). These findings suggest a functional
association of ZFAT with the MS susceptibility genes IL7RA
and /L2RA. From the viewpoint of autoimmune disorders, an
IL7R-mediated signal has been reported to be involved in the
generation and survival of Ty17 cells (45), a subset of IL17-
producing CD4" T-cells required for the initiation of
autoimmune disorders (44), together suggesting a crucial role
for ZFAT in autoimmune diseases.

What is the primary event causing the reduced number of
peripheral T-cells in Zfar”'-Cd4Cre mice? One of the
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remarkable phenotypes observed in the Zfatf/f—Cd4Cre mice
is a decrease in the expression of I17ra on peripheral CD4+
T-cells. The responsiveness of the Zfatf/ f.cd4Cre
CD44°CD4*-naive T-cells to 117 is indeed attenuated, which
will culminate in reduced survival potency. In addition to the
I17r-mediated signal, when considering that both I17ra- and
Tecr-mediated signals play a crucial role in the survival of
naive T-cells (33, 34), it seems possible that the impaired
induction of I12ro expression in response to Tcr underlies the
altered T-cell homeostasis and T-cell survival in Zfatf/ f
Cd4Cre mice (Figure 3).

The expression of the IL2RA gene is tightly regulated at
the transcriptional level, and the positive auto-regulatory loop
of the IL2/the high-affinity receptor of IL2R system plays a
major role in controlling the magnitude and duration of the
T-cell immune response (39). Although positive and negative
regulatory regions in the [L2RA gene have been
characterized, other regulatory regions or elements are
strongly suggested to exist based on the findings of several
highly-conserved regions through the IL2RA locus between
humans and mice, and the findings of the presence of histone
acetylation islands distinct from the known regulatory
regions and the autoimmune disorders-associated single-
nucleotide polymorphism located in the 5’ region of the
IL2RA gene (39, 55). In addition, IL2/IL2R signaling has an
essential non-redundant role in the production of
CD4*CD25"% regulatory T-cells, which are critical for
maintaining immune tolerance (56). Thus, both the precise
mechanism of the defect in the induction of I12ra expression
by Tcr stimulation in Zfat-deficient T-cells and the possibility
of the involvement of Zfat in the production of regulatory T-
cells and in the development of autoimmune disorders should
be examined in future studies.

Conclusion

The functional role of ZFAT in biology has been
dramatically expanded by accumulating evidence regarding
the functional consequences of Zfat deficiency in mouse
models or cell lines. Our findings for the immune system
show that Zfat is critical for thymocyte development and T-
cell homeostasis in the periphery and that Zfat is crucial for
the proper expression of I17ro and I12ro in peripheral T-cells.
However, the detailed molecular mechanisms of action of
Zfat remain to be elucidated in the thymocyte differentiation
of T-cells and in the homeostasis of naive T-cells. The
identification of the Zfat target genes essential for thymic
development of T-cells and their homeostasis is expected to
uncover novel approaches to manipulating the positive
selection process in the thymus and T-cell homeostasis. The
elucidation of precise molecular mechanisms of Zfat
functions will provide new insights into immune regulation
and a wide variety of diseases.
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