
Abstract. Four peptides synthesized in the heart, namely
atrial natriuretic peptide (ANP), vessel dilator, kaliuretic
peptide and long-acting natriuretic peptide (LANP), reduce
cancer cells in vitro by up to 97%. These four cardiac
hormones, in vivo, eliminate up to 86% of human small-cell
lung carcinomas, two-thirds of human breast carcinomas, and
up to 80% of human pancreatic adenocarcinomas growing in
athymic mice. Their anticancer mechanisms of action, after
binding to specific receptors on cancer cells, include
targeting the Rat sarcoma-bound guanosine triphosphate
(RAS) (95% inhibition)-mitogen activated protein kinase
kinase 1/2 (MEK-1/2) (98% inhibition)-extracellular signal-
related kinases 1/2 (ERK-1/2) (96% inhibition) cascade in
cancer cells. They also inhibit MAPK9, i.e. c-JUN-N-terminal
kinase 2. They are dual inhibitors of vascular endothelial
growth factor (VEGF) and its VEGFR2 receptor (up to 89%).
One of their downstream targets of VEGF is β-Catenin, which
they reduce up to 88%. The Wingless-related integration site
(WNT) pathway is inhibited by up to 68% and WNT secreted-
Frizzled related protein-3 was reduced by up to 84% by the
four peptide hormones. A serine/threonine-protein kinase,
AKT, derived from “AK” mouse strain with thymomas (T), is
reduced by up to 64% by the peptide hormones. Signal

transducer and activator of transcription 3 (STAT3), a final
“switch” that activates gene expression patterns that lead to
malignancy, is decreased by up to 88% by these peptide
hormones; STAT3 is specifically reduced as they do not affect
STAT1. There is cross-talk between the RAS–MEK-1/2–ERK-
1/2 kinase cascade, VEGF, β-catenin, WNT, JNK and STAT
pathways and each of these pathways is inhibited by the
cardiac peptides. These peptides have been demonstrated to
enter the nucleus of cancer cells where they inhibit the proto-
oncogenes c-FOS (up to 82%) and c-JUN (up to 61%).
Conclusion: The cardiac peptides inhibit multiple targets and
cross-talk between the targets within cancer cells.

The human body synthesizes a number of peptides that have
salt-excreting (natriuretic) properties to help control blood
volume by causing a natriuresis and diuresis in healthy humans
(1-3) and in persons retaining salt and water such as in
congestive heart failure (4, 5) and acute renal failure (6, 7). In
the heart, the atrial natriuretic peptide prohormone (proANP)
gene encodes a 126-amino-acid (a.a.) pro-hormone which
contains four peptide hormones (3, 8, 9). These four hormones
synthesized by the atrium of the heart are long-acting
natriuretic peptide (LANP), which consists of the first 30 a.a.
from the N-terminal end of the 126 a.a. prohormone, vessel
dilator, a.a. 31-67 of this prohormone, kaliuretic peptide, a.a.
79-98; and atrial natriuretic peptide (ANP), a.a. 99-126 of this
126-a.a. pro-hormone (3, 10). These peptides were named for
their most potent known biological effect(s) at the time of
naming (3). These peptide hormones are now synthesized with
commercial peptide synthesizers from their known a.a.
sequences (3). Via a separate gene, the heart also synthesizes
brain natriuretic peptide (BNP), which was misnamed, as 
50-fold more BNP is made in the heart than the brain. A third
gene in the heart synthesizes C-natriuretic peptide.

In the kidney, the ANP pro-hormone is also synthesized
but it is cleaved differently, adding four a.a. of kaliuretic
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peptide to the a.a. of ANP (11-13), with the resulting peptide
being named urodilatin. It is important to note that the a.a.
in urodilatin are identical to those of ANP and the four C-
terminal a.a. of kaliuretic peptide (11-13). Thus, one would
expect that urodilatin and ANP would have similar if not
identical effects, and in general they do (11, 12).

There is also another peptide (DNP) with similar structure
to ANP that is found in the venom of the green mamba
snake, Dendroaspis angusticeps (14). Since DNP has a
similar structure to ANP, one would expect that it would
have similar effects to ANP (14). Each of these peptides,
except BNP, have anticancer effects in vitro when given in
concentrations above those normally circulating in the
human body, i.e. pharmacological concentrations (15-26).
This review concentrates on their anticancer effects.

It has been reviewed previously (27) that in cell culture,
the four cardiac hormones reduce up to 97% of human
pancreatic, colon, prostate, breast, ovarian and kidney
adenocarcinoma cells (15-21), angiosarcoma of the heart
cells (22), melanomas (23), medullary thyroid carcinomas
(21), glioblastomas of the brain (24) as well as small-cell
(25) and squamous cell lung carcinoma cells (26). The heart
and kidney peptides eliminate up to 80% of human
pancreatic carcinomas (28), 86% of small cell lung
carcinomas (29) and two-thirds of human breast carcinomas
growing in athymic mice (30), which was detailed in the
previous review (27), as was part of their mechanism(s) of
action illustrated in Figure 1. The previous review detailed
that these peptides cause up to 95% inhibition of the
conversion of inactive RAS-GDP to active RAS-GTP (31,
32), up to 98% inhibition of MEK-1/2 kinases (33, 34) and
up to 96% of ERK-1/2 kinases (35, 36) in the RAS–MEK-
1/2–ERK-1/2 kinase cascade and that they also inhibit up to
89% of c-JUN-N-terminal kinase 2 (JNK2) (37) whose
activation is dependent upon RAS (38, 39).

The present review concentrates on the new information
gained since the previous review (27) focused on the
mechanism(s) of action of these anticancer agents.

WNT Signaling Pathway

The WNT signaling pathway is a signal transduction
pathway that is enhanced in a variety of cancer types (40,
41). The origin of the name WNT comes from a
portmanteau of Int (integration 1 gene in breast cancer) and
Wg (wingless) in Drosophila, which has the best
characterized WNT gene (41). WNT signaling is stimulated
by RAS (42) and vascular endothelial growth factor
(VEGF) pathways (42). Both RAS and VEGF contribute to
the pathobiology of colon cancer, in part through the WNT
pathway (43). The fou-peptide hormones from the heart
maximally reduce WNT3α 68% in human pancreatic
carcinoma cells (44).

Vascular Endothelial Growth Factor

VEGF plays an essential role throughout tumor development by
enabling blood vessels to establish and grow into tumors, thereby
providing nutrients and oxygen to the tumor (45-49). VEGF
intracellularly enables cancer cells to grow via stimulating RAS
(50, 51), MEK-1/2 (52, 53) and ERK-1/2 kinases (54, 55).
VEGFR2/KDR/FLK-1 receptor is the main VEGF receptor
mediating the cancer-enhancing effects of VEGF (46, 48, 56).

The four cardiac peptides from the ANP pro-hormone gene
reduce the VEGFR2 receptor in human pancreatic
adenocarcinoma cells by up to 83% (57). They also reduce
the VEGFR2 by up to 89% in human small-cell lung cancer
cells and up to 92% in human prostate cancer cells (57).
These results were confirmed by western blottting (57). The
cardiac hormones reduce VEGF itself by up to 58% (57).
Although there are a number of compounds that inhibit VEGF
or its receptor, VEGFR2, the cardiac peptides are the first
agents that are dual inhibitors of VEGF and VEGFR2 (57).

β-Catenin

One of the downstream targets of VEGF is β-Catenin (58). β-
Catenin is a multi-functional protein located at the intracellular
side of the cytoplasmic membrane that causes the malignant
growth of pancreatic (59, 60), colonic (40, 61) and renal (62,
63) tumors. β-Catenin activation also leads to gastric (64),
breast (65, 66), liver (67), ovarian (68), endometrial (68),
anaplastic thyroid (69, 70), and prostate (71, 72) cancer. 

The four cardiac peptide hormones reduce β-catenin up to
88% in human pancreatic cancer cells, up to 83% in human
colorectal adenocarcinoma cells, and up to 73% in human
renal adenocarcinoma cells (73). ANP induces a decrease in
the expression of total β-catenin, which is associated with a
redistribution of β-catenin from nuclear and cytoplasmic
compartments to cell-to-cell junction sites and is associated
with a decrease in the proliferation of colon adenocarcinoma
cells (74). ANP causes a down-regulation of c-Myc (MYC)
and cyclin D-1 gene transcription regulated by β-Catenin
(74). β-catenin appears to be the central target of the
anticancer effects of these cardiac hormones since these
hormones inhibit upstream RAS kinase, which activates β-
Catenin (70), and downstream JNK and VEGF, which are
activated by β-Catenin, as illustrated in Figure 1 (58, 75).

AKT

AKT, also known as protein kinase B, is a serine/threonine
protein kinase that has a key role in cell proliferation and in
the growth of many types of cancer (76-80). The name AKT
derives from the ‘Ak’ mouse strain that develops spontaneous
thymic lymphomas, and ‘T’ stands for thymoma (81). AKT is
overexpressed in colorectal cancer cells but not in normal
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colonic mucosa or hyperplastic polyps (82). ANP reduces the
activation of AKT by two-fold between 2 and 4 h of treatment
in cell culture (74). Vessel dilator, kaliuretic peptide, and
LANP reduce the concentration of AKT by 60%, 61% and
59% in human pancreatic carcinoma cells, by 47%, 45%, and
46% in human colorectal cancer cells, and by 31%, 32%, and
31% in renal adenocarcinoma cells (83). There is cross-talk
between the activation of AKT and its inhibition by the cardiac
peptides, which is summarized as follows: RAS activates AKT
(84). Growth factors such as epidermal growth factor also
activate RAS, with a resultant downstream activation of AKT
(84). The effects of VEGFs on cancer growth and metastasis

are mediated by binding the VEGFR2 (KDR/FLK-1) receptor,
which, in turn, activates the AKT pathway (85). The four
cardiac peptides inhibit each of these steps. Thus, there is a
complex interplay of AKT, RAS, and VEGF in causing cancer
and maintaining cancer cell growth (58, 76, 77, 85, 86). This
interplay is modified (inhibited) by these four cardiac peptides. 

Secreted Frizzled-related Protein-3

Secreted frizzled-related protein-3 (sFRP-3), a ~300-a.a.
glycoprotein (87-90), promotes renal cancer growth when
injected into athymic mice (91). sFRP-3 also causes tumor
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Figure 1. Cardiac hormones inhibit cellular oncogenes c-FOS (up to 82%) and c-JUN (up to 65%) and rat sarcoma-bound guanosine GTP (RAS-
GTP), mitogen-activated protein kinase kinase 1/2 (MEK-1/2), and extracellular signal-related kinases 1/2 (ERK-1/2) kinase cascade by 95-98%.
These multiple kinase inhibitors are also strong inhibitors (i.e. by 91%) of DNA synthesis within cancer cells. Other targets which the cardiac
hormones inhibit within cancer cells are vascular endothelial growth factor (VEGF), the VEGFR2 receptor, β-Catenin, secreted frizzled-related
protein 3 (sFRP-3), c-JUN-N-terminal kinase 2 (JNK), signal transducer and activator of transcription 3 (STAT3) and the WNT pathway. As
illustrated, cardiac hormones inhibit [shown by (–)] several steps in the feedback loop that stimulate the oncogenes c-FOS and c-JUN in the nucleus,
interrupting the vicious cycle of stimulating cancer cell growth. RTK: Tyrosine kinase receptor; SRC: rous sarcoma viral proto-oncogene tyrosine
kinase; SHC: rous sarcoma SH2 C-terminal binding domain adapter protein; GRB2: growth factor receptor-bound protein 2; SOS: son of Sevenless
gene; RAS-GDP: rat sarcoma-bound guanosine diphosphate (GDP); RAG: rapidly accelerated fibrosarcoma serine/threonine protein kinase; AKT:
AK mouse strain with ‘T’ for thymoma. Modified with permission from Reference 120.



promotion in other types of cancers (92). ANP affects
activation of the frizzled-receptor (74) which contains sFRP-
3 (93, 94). ANP and the frizzled receptor co-localize on the
cell membrane within 30 min after ANP addition to culture
medium (74). Vessel dilator, kaliuretic peptide, ANP and
LANP reduce the levels of sFRP-3 by 77-78% in human
pancreatic cancer cells, 83-84% in human colorectal cancer
cells, and 66-68% in human renal cancer cells (95). With
respect to the mechanism by which the reduction of sFRP-3
levels by the cardiac peptides leads to their anticancer effects,
their ability to inhibit sFRP-3, the active cysteine-rich domain
(CRD) of the frizzled receptor (88), blocks the propagation
of the signal responsible for causing cancer cell growth.

Signal Transducers and Activators of Transcription

STATs are cytoplasmic transcription factors (Figure 1) (96, 97)
which are the final ‘switches’ that activate gene expression
patterns that lead to cancer (96-98). STAT3 is important in
human cancer formation (97, 99). STAT3 is overexpressed in a
variety of human tumors (97, 100, 101). The epidermal growth
factor (EGF) receptor-mediated growth of squamous carcinoma
cells is known to require STAT3 but not STAT1 (100). 

ERK-1/2 activates (i.e. phosphorylates) STAT3 at serine 727
in response to growth factors (102). STAT3 is an excellent
substrate for ERK kinases (102) and, as above, the cardiac
peptides all inhibit ERK-1/2 kinases. Vessel dilator, LANP,
kaliuretic peptide, and ANP reduce STAT3 by 88%, 54%,
55%, and 65% respectively in human small-cell lung cancer
cells, and by 66%, 57%, 70%, and 77% in human pancreatic
adenocarcinoma cells (103). These peptides from the heart do
not reduce STAT1 in either human small-cell lung cancer or
pancreatic adenocarcinoma cells (103). Thus, the four cardiac
peptides are significant inhibitors of STAT3 but spare STAT1,
which suggests a specificity for the anticancer mechanism(s)
of action of these peptides in human cancer cells (103).

Oncogenes

c-FOS is a cellular proto-oncogene belonging to the
immediate early gene family of transcription factors (104,
105). Transcription of c-FOS is up-regulated in response to
growth factors such as EGF (104, 106). c-FOS overexpression
increases proliferation of human hepatocytes (107), and
enhanced c-FOS expression helps induce hepatocellular
carcinomas (108-110). c-FOS dimerizes with c-JUN to form
activator protein 1 (AP-1) transcription factor, which up-
regulates transcription of genes involved in proliferation and
cancer formation (105, 111). When c-FOS and c-JUN are
joined to form AP-1 protein, this protein can bind to the AP-
1-binding site on DNA to induce transcription of various
genes (112). The AP-1 complex has been associated with
transformation and progression of cancer (105). Regulation

of c-FOS is performed through the MAPK pathway and via
STAT3 (113, 114) (Figure 1). c-JUN is another proto-
oncogene which is activated through double phosphorylation
by the JNK pathway and STAT3 (114-116) (Figure 1).
Amongst the JUN proteins, c-JUN is unique in positively-
regulating cell proliferation (105). 

Vessel dilator, LANP, kaliuretic peptide, and ANP have
each been demonstrated by immunocytochemical techniques
to enter the nucleus of cancer cells (117, 118) where they
inhibited proto-oncogenes. Indeed, this is the case, as
demonstrated in three different cancer lines (119). Thus,
vessel dilator, LANP, kaliuretic peptide and ANP over a
concentration range of 100 pM-10 μM, reduce c-FOS by
61%, 60%, 61% and 59% in human hepatocellular cancer
cells, by 82%, 74%, 78% and 74% in small-cell lung cancer
cells, and by 82%, 73%, 78% and 74% in human renal
adenocarcinoma cells (119). c-JUN was reduced by vessel
dilator, LANP, kaliuretic peptide and ANP by 43%, 31%,
61% and 35% in hepatocellular cancer cells, by 65%, 49%,
59% and 40% in small-cell lung cancer cells, and by 47%,
43%, 57% and 49% in renal cancer cells, respectively (119).

Thus, there appears to be a complex interaction of the four
heart peptide hormones, c-JUN, c-FOS and MAPKs within
cancer cells, as outlined in Figure 1, for in addition to the
RAS–MEK-1/2–ERK-1/2 kinase cascade, another upstream
regulator of c-JUN is JNK kinases, which phosphorylates c-
JUN (115) and, in turn, JNK is inhibited (89%) by the four
cardiac hormones (37). Both c-FOS and c-JUN are activated
by STAT3 (114, 116) and the four heart peptides inhibit
STAT3 (103). Thus, the cardiac hormones inhibit
proliferative transcription factors (103) and by significantly
inhibiting both c-FOS and c-JUN, and thus AP-1 protein,
they most likely inhibit the transcription of various
downstream genes and the transformation and progression of
cancer regulated by AP-1 (105).
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