
Abstract. Despite the potential utility of adipose-derived
mesenchymal stem cells (ADSCs) in regenerative medicine,
not much is known about their interaction with residual
cancer cells. Here, we studied the direct co-culture effects of
ADSCs on H358 lung cancer cells. The paracrine effects of
ADSCs were compared to those of the cancer-associated
fibroblasts. Extracellular matrix and conditioned media were
used to determine the underlying molecules. Time-lapse
photography, fluorescence-activated cell sorting (FACS),
scratch assays, immunocytochemistry, and reverse-
transcription polymerase chain reaction were used to analyze
the effects. ADSCs differentiated into myofibroblasts
expressing αSMA, and H358 cells strongly attached to them.
EMT-like changes were observed in H358 cells which were
inhibited by γ-secretase inhibitor, a-NOTCH inhibitor.
Surprisingly, both mesenchymal and epithelial genes were
expressed, and the effects were readily reversed when cells
were sorted by FACS. These data suggest that ADSCs may
differentiate into tumor stroma that plays supportive roles
during cancer progression.

Malignant progression is driven by cell autonomous genetic
alterations in cancer cells, and selected by the non-cell
autonomous effects of the tumor microenvironment (1-3).
Cancer-associated fibroblasts (CAFs) are the most abundant
stromal cellular components that are known to nest and
nurture the cancer cells (4-6). Recently cell therapies using
adipose-derived mesenchymal stem cells (ADSCs) have been
frequently employed to treat various aging-related
degenerative diseases or for reconstruction after oncological
surgery (7, 8). In contrast to accumulating data on their

multipotency to differentiate into various normal tissues,
little has been reported about their unintended interaction
with cancer cells, which seemed to promote cancer cell
proliferation or metastasis in endometrial, stomach, and
breast cancer (9-11). In the present study, we examined the
direct interaction between ADSCs and H358 lung cancer
cells in vitro. It is noteworthy that closely-related to ADSCs,
bone marrow-derived mesenchymal stem cells (MSCs) are
intimately associated with cirrhosis, fibrosis, and malignant
transformation; they are attracted to the inflammatory signals
released from tumors, infiltrated, and differentiated into
CAFs that are marked by the aberrant expression of alpha-
smooth muscle actin (αSMA) (12, 13). Although there is
little evidence that ADSCs increase the risk of cancer (14),
they seem to have full potential to differentiate into stromal
myofibroblasts that play a deterministic role in tumor
characteristics, such as growth, metastasis, and drug
resistance (15-18), which may help recapitulate the tumor
microenvironments in vitro (19).

CAFs have been shown to promote epithelial- mesenchymal
transition (EMT) in cancer cells (20-23). EMT renders cancer
cells migratory and resistant to epithelial-targeted drugs as the
cellular mechanism driving malignant progression (24-27).
Cellular hallmarks of EMT include loss of E-cadherin-
mediated homotypic cell adhesion, the loss of lamellipodia, and
the gain of elongated fusiform filopodia (28). In vivo, EMT is
frequently observed in the invasive front where malignant
cancer cells are detached and migrate away from the tumor
nodules (29, 30). Various ligands released by CAFs have been
reported to induce EMT in cancer cells, including transforming
growth factor-β1 (TGFβ1) (31, 32), WNT (30, 33), JAGGED,
NOTCH (34), hepatocyte growth factor (HGF) (35), collagen I
(COLI) (36), or oxidative stress (37). During EMT, NOTCH
and TGFb signaling converge to SMAD3 pathway (38, 39).
TWIST, Snail1 (SNAI1), and zinc finger E-box-binding
hemeobox 1, 2 (ZEB1, 2) are up-regulated, which represses E-
cadherin (CDH1) expression (40). In prostate cancer, CAFs
were shown to induce EMT by engaging in Warburg
metabolism that generates oxidative stress (41). In response,
hypoxia-induced factor-1α (HIF1α) was activated in cancer
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cells, which up-regulated SNAI1 expression (41). Furthermore,
recent studies showed MSC-derived myofibroblasts induced
EMT in pancreatic cancer cells via the JAGGED-NOTCH
pathway (13). 

In this study, we analyzed the paracrine effects of ADSCs
on H358 lung cancer cells. 

Materials and Methods 

Cell culture. Human ADSCs were purchased from Cambrex (Lonza
Walkersville, MD, USA), and cultured in ADSC growth medium:
Minimum essential mediaum (MEM) alpha (Gibco, Gaithersburg,
MD, USA) supplemented with 10% fetal bovine serum (FBS)
(Hyclone, Logan, UT, USA), 100 mM sodium pyruvate (Gibco), and
100 units of penicillin/100 μg/ml streptomycin (Gibco). Upon
80~90% confluence, ADSCs were maintained in differentiation
media with low serum, 1% FBS, supplemented with TGF-β, 7.5
ng/ml (13), and 400 μg/ml heparin for three days. Human lung
cancer H358 cells were obtained from the Korea Cell Line Bank
(Seoul, Korea) and transfected with green fluorescent protein (GFP)
construct as previously described (39), and cultured in cancer
growth medium: RPMI1640 (Gibco) supplemented with 10% FBS,
100 units of penicillin/100 μg/ml streptomycin (Gibco). Cells were
cultured at 37˚C, with 5% CO2, and all assays were carried out with
MSCs and CAFs of passage six or less.

Direct and indirect co-culture. To prepare conditioned media,
ADSCs were cultured in the cancer growth medium for two days.
The medium was centrifuged, and the top medium was taken
gently without disturbing the pellet of cell debris. The conditioned
media was frozen at –70˚C until use. About 20 lots of conditioned
media were pooled together before use. The conditioned media
were replaced every 24 h. For direct co-cultures, ADSCs were
cultured in growth medium until 90%, and switched to the
differentiation medium. After maintenance for three days, H358
cells were seeded directly on top, or on extracellular matrix
(ECM) that was prepared by stepwise methanol treatment of 50%,
95%, 100%, followed by rehydration into the cancer growth
medium. GFP-tagged lung cancer cells (2×103) were seeded either
in the conditioned media, on ECM, or directly on top of live
ADSCs. The number of cells and morphology of GFP-positive
H358 cells were recorded daily under a fluorescence microscope
(Zeiss, Oberkochen, Germany). 

Attachment assay. FBS is enriched with a number of growth factors
including fibroblast growth factors (FGFs) and transforming growth
factors (TGFs) that render epithelial H358 cells fibrotic and more
adhesive to culture dishes. To avoid this effect, defined ACL4
medium for lung cancer cells was used; RPMI 1640, supplemented
with 0.02 mg/ml insulin, 0.01 mg/ml transferrin, 25 nM sodium
selenite, 50 nM hydrocortisone, 1 ng/ml epidermal growth factor,
0.01 mM ethanolamine, 0.01 mM phosphorylethanolamine, 100 pM
triodothyronine, 0.5% bovine serum albumin (BSA), 10 mM
HEPES, 0.5 mM sodium pyruvate, and 2 mM L-glutamine. GFP-
tagged H358 lung cancer cells (2×103) were seeded on 6-well
plates: with live ADSCs, or ECM, or no treatment. After 24 hours of
incubation, unattached H358 cells were gently washed away three
times with PBS, and the remaining GFP-positive cells were counted
under a fluorescence microscope. 

Time-lapse photography and fluorescence-activated cell sorting. To
determine the growth rates and cell motility, time-lapse photography
was performed following the cells in the same positions of the
culture dishes for 2-3 days. To show both the GFP-positive H358
cells and the negative ADSCs, photos were taken with both regular
light and fluorescent light. To align the dishes in the same position,
the bottoms of culture dishes were pre-marked with permanent
markers, and photos were taken aligning the markers at the same
positions every day. In multicellular colonies, particularly in
multilayers of mesenchymal cells, individual cells were often
indistinguishable. In those cases, to precisely score the cell numbers,
cells were trypsinized, resuspended as single cells, and counted by
FACSAriaIII (Becton Dickinson Biosciences, San Jose, CA, USA)
using 488 nm optical filter.

Wound healing assay for cell motility. To test the effects of ADSCs
on the motility of H358 cells, scratches were made with pipette tips,
and how quickly the scratches were filled by neighboring cells was
observed in the next 3-4 days. Approximately 1×104 GFP-tagged
H358 cells were seeded on ADSCs, ECM, or no treatment as
described for co-cultures. After 24 h of incubation, scratches were
made with pipette tips and rulers. The scraped cells were removed,
and the remaining cells were incubated for two more days. The
GFP-positive H358 cells migrating into the scratched area were
photographed and/or scored. All assays were performed in triplicate. 

Immunocytochemistry. Immunocytochemistry was performed as
described elsewhere (39). Briefly, cells were fixed with 4%
paraformaldehyde for 10 min and permeablized with 0.5% Triton-X
for 5 min, blocked with 1% BSA in PBS for one hour, and
incubated with primary antibodies for two hours at room
temperature, and incubated with secondary Alexa 594-conjugated
anti-mouse IgF from Invitrogen (Carlsbad, CA, USA) for one hour.
Additional reagents were purchased from Sigma Aldrich (St. Louis,
MO, USA). The cells were washed with PBS, and were stained with
4’,6-diamidino-2-phenylindole (DAPI) for nuclei as a counter
staining (40). The cells were observed with a ZEISS FL Axiovert
200 Microscope (Zeiss, Oberkochen, Germany). 

Quantitative reverse transcription polymerase chain reaction (RT-
PCR). To compare gene expression levels quantitatively, total RNA
was extracted from each cell type after sorting by FACSAriaIII
(Becton Dickinson Biosciences) using 488 nm optical filter, or
passaging after ADSCs were differentiated. cDNA was synthesized
using oligo-dT primers and M-MLV reserse transcriptase
(Invitrogen). Quantitative real-time RT-PCR was performed using
Applied Biosystems 7900HT fast real-time PCR systems (Foster
City, CA, USA), SYBR Green PCR master mix (Applied
Biosystems), as described elsewhere (39). The following primers
were used for each gene: SNAI1, F: 5’-CCTCCCTGTCAGATG
AGGAC-3’, R: 5’-CCAGGCTGAGGTATTCCTTG-3’, TWIST1, F:
5’-GGAGTCCGCAGTCTTACGAG-3’, R: 5’-TCTGGAGGACC
TGGTAGAGG-3’, E-cadherin (CDH1), F: 5’-TGCCCAGAAAAT
GAAAAAGG-3’, R: 5’-GTGTATGTGGCAATGCGTTC-3’, N-
cadherin (CDH2), F: 5’-ACAGTGGCCACCTACAAAGG-3’, R: 5’-
CCGAGATGGGGTTGATAATG-3’, Cytokeratin 19 (CK19), F: 5’-
CCCGCGACTACAGCCACTA-3’, R: 5’-GCTCATGCGCAGAG
CCT-3’, Vimentin (VIM), F: 5’-GAGAACTTTGCCGTTGAAGC-3’,
R: 5’-GCTTCCTGTAGGTGGCAATC-3’, fibroblast activation
protein (FAP), F: 5’-TCAACTGTGATGGCAAGAGCA-3’, R: 5’-
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TAGGAAGTGGGTCATGTGGGT-3’, α-SMA, F: 5’-AGGGGGTG
ATGGTGGGAATG-3’, R: 5’-GCCCATCAGGCAACTCGTAAC-3’,
and glyceraldehydes 3-phosphate dehydrogenase (GAPDH), F: 5’-
TGGACTCCACGACGTACTCAG-3’, R: 5’-ACATGTTCCAATAT
GATTCCA-3’. GAPDH was used as the house keeping gene for
loading control. Relative expression levels were analyzed by the
ΔΔCt method.

NOTCH inhibition. To determine the effects of NOTCH inhibition,
a direct co-culture was established as described above, and γ-
secretase inhibitor (GSI, Santa Cruz Biotech. Inc.), a potent NOTCH
inhibitor, was added to the medium. GSI was dissolved in DMSO
at 1 μΜ, and diluted 1000-fold to 1 nM in the culture media. The
changes in cell morphology and motility of H358 cells were
monitored by time-lapse photography for the next 24 h. 

Results 

H358 lung cancer cells attached to ADSC-derived
myofibroblasts. To evaluate the potential of ADSCs to
differentiate into tumor stroma, ADSCs were co-cultured
with H358 lung cancer cells and the gene expression was
examined (Figure 1A). Seeded on ADSCs, H358 cells were
distinguished by stable GFP expression (Figure 1B).
Within 6-24 h of co-culture, significantly more H358 cells
were attached compared with monoculture condition. This
was most dramatic in ACL4 medium, a defined medium
for lung cancer cells, improving attachment approximately
20-fold or more (Figure 1C). When the medium was
supplemented with 10% FBS, the effect was reduced to
approximately 1.5-2.0-fold (Figure 1E). In monoculture
conditions, high serum induced slightly fibrotic
morphology with reduced homotypic adhesion and
increased attachment to the culture dish. To test whether
the attachment was enhanced by the secreted factors or the
ECM laid by ADSCs, the effects of de-cellularized ECM
were compared with those of conditioned media. The ECM
of ADSCs reproduced the enhanced attachment (Figure
1C), but the conditioned media did not. To test whether
they differentiated into stromal myofibroblasts, gene
expression was examined by immunocytochemistry and by
RT-PCR (Figure 2). Compared with normal skin fibroblasts
(39) that did not induce aSMA expression (Figure 2A),
ADSCs expressed aSMA and CDH2 in similar levels to
those of the CAFs and induced aSMA expression in H358
cells (Figure 2B, arrowheads). RT-PCR of the sorted cells
also showed up-regulation of aSMA expression. Sox2
expression was significantly reduced, indicating that
terminal differentiation occurred (Figure 2D). These data
indicate that ADSCs differentiated into stromal
myofibroblasts that produce ECM that H358 lung cancer
cells readily attached to. 
ADSCs promoted the motility of H358 cells. In a recent report,
primary CAFs promoted the motility of H358 cells (39). To
see if ADSCs also stimulate the motility of H358 cells, time-

lapse photography was used. When co-cultured with ADSCs,
H358 cells became highly migratory, For example, they lost
the homotypic adhesion that maintains the integrity of static
epithelial colonies, and became fibrotic individual cells that
moved around (Figure 3A). Neither ECM nor conditioned
media could reproduce the morphological changes caused by
direct contact of H358 cells with live ADSCs. To demonstrate
the changes in cell motility, scratch assays were performed.
Within 48 h after scratches were made, both ADSCs and H358
cells actively migrated into the scratched area (Figure 3B), but
not in co-cultures with ECM or conditioned media where the
gaps between colonies were slowly filled by static cell
proliferation (Figure 3C and D). To test whether the co-culture
effects were reversible, H358 cells were sorted from ADSCs
by FACS for their GFP expression, and plated alone under a
monoculture condition. H358 cells immediately regained their
original non-migratory epithelial characteristics, indicating that
the direct cell-cell contact with ADSC rendered them motile
and fibrotic in a reversible manner.

EMT-like gene expression was induced in H358 cells. To
examine the changes in gene expression associated with
EMT in H358 cells, RT-PCR and immunocytochemistry
were performed (Figure 4). TWIST and SNAI1, the
transcription factors with potent EMT inducing activities,
were significantly up-regulated, and consequently the
downstream mesenchymal markers CDH2 and VIM were
also up-regulated. However, expression of epithelial markers,
CK19 and CDH1, was maintained at elevated levels (Figure
4C), indicating that the biphasic epithelial and mesenchymal
state was induced. Compared with indirect co-cultures with
the conditioned media and ECM, live ADSCs activated the
expression of TWIST, SNAI1, VIM and CDH2 in significantly
higher levels. A similar EMT-like phenomenon was also
observed when H358 cells were co-cultured with the primary
CAFs, as shown in Figure 4F and G (unpublished data; 38).
These gene expression data suggest that the EMT-like
phenomenon in H358 cells, induced similarly by ADSCs and
CAFs, is different from normal EMT in its transient,
reversible, and biphasic nature. 

Discussion

Despite the recent enthusiasm for cell therapies with ADSCs,
not much is known about their unintended interaction with
residual cancer cells. In this study, we co-cultured ADSCs
with H358 lung cancer cells allowing for direct cell-cell
interaction and found that ADSCs promoted the attachment
of the cancer cells and induced an EMT-like phenomenon
(Summarized in Figure 5A). As a lineage tracer for the
cancer cells, stable GFP expression was used to score for
changes in the number of cells and the cellular hallmarks of
EMT: Loss-of homotypic cell adhesion of epithelial colonies,
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gain-of fibrotic morphology with elongated filopodia, and
gain of increased cell motility. Indirect co-cultures with the
ECM promoted attachment, but not the EMT-like
phenomenon, uncoupling the ECM-induced attachment from
the EMT-like phenomenon. On the other hand, conditioned
media did not reproduce the EMT-like phenomenon,
suggesting that direct cell-cell signaling might be underlying

it. To interfere with the NOTCH-mediated direct cell-cell
communication, γ−secretase inhibitor was added to the
media (1nM) on day 2 of co-culture. The EMT-like
phenomenon was reversed; most of the mesenchymal cells
disappeared and epithelial colonies started to appear within
24 h (Figure 5B). A spot in the culture marked by an asterisk
shows the same position of the culture dish with
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Figure 1. H358 lung cancer cells strongly attached to extracellular matrix (ECM) of adpose-derived mesenchymal stem cells (ADSCs). Reaching 80-
90% confluence in growth media, ADSCs were differentiated for three days supplemented with transforming growth factor-β1 (TGFβ1) in low serum.
After direct co-culture with H358 lung cancer cells, or indirect with the ECM or conditioned media, gene expression was examined. A: Schematic
drawing of co-cultures; H358 cells tagged with green fluorescent protein (GFP) were seeded on top of live ADSCs, after methanol treatment, or in
conditioned media. B: GFP-positive (H358) and GFP-negative (ADSC) cells in co-culture were observed under fluorescence microscopy. Normal light
was also used to show GFP-negative CAFs. Scale bar: 50 μm. C: Graphs showing the percentage of attached H358 cells in ACL4 medium. Control
was H358 cells only; ECM was H358 cells seeded on ECM; stroma was H358 cells co-cultured with live ADSCs.



mesenchymal GFP-positive cells migrated around
dynamically. These results suggest that ADSCs may attach
to cancer cells and induce EMT-like changes in H358 cells.

At the gene expression level, ADSCs were reminiscent of
the primary CAFs. Particularly, αSMA expression was up-
regulated at similar levels, indicating that ADSCs
differentiated into myofibroblasts. ADSCs are multipotent

adult stem cells that can differentiate into various tissue types
depending on the cellular context, and our data suggest that
H358 lung cancer cells triggered differentiation into the
myofibroblast lineage. MSCs, closely related adult stem cells
of mesodermal origin, were recently shown to differentiate
into CAFs and induce EMT in pancreatic cancer cells through
the NOTCH pathway (13). Diversity of tumor
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Figure 2. Adpose-derived mesenchymal stem cells (ADSCs) differentiated into myofibroblasts when co-cultured with H358 lung cancer cells. Gene
expression underlying myofibroblast differentiation was examined by immunocytochemistry and RT-PCR. GFP-posive H358 cells and GFP-negative
ADSCs were stained red for αSMA and counterstained with 4’,6-diamidino-2-phenylindole (DAPI; blue). A: When co-cultured with normal fibroblasts,
H358 cells exhibited epithelial characteristics and low αSMA expression. B: When co-cultured with ADSCs αSMA expression was up-regulated in both
ADSCs and H358 cells (white arrowheads), Scale bar: 50 μm. C: To quantitatively determine the gene expression levels, ADSCs and H358 cells were
sorted by FACS after two days of co-culture. D: RT-PCR of SOX2, CDH1, CDH2 and aSMA, showing differentiation of ADSCs into myofibroblasts. 



microenvironments has been postulated to play a selective
role during cancer evolution, and an intriguing question is
whether MSCs or ADSCs can differentiate into specific CAFs
tailored to fit individual tumor genetics. For example, H358
cells that have non-metastatic origin, exhibited incomplete or
transient EMT-like changes in a previous report: SMAD3,
TWIST and SNAI1 were up-regulated, but CDH1 expression
was not repressed (39). When co-cultured with ADSCs or
CAFs, A similar biphasic state was again induced (Figure 4).

When ADSCs were removed from culture conditions, the
EMT-like phenomenon was reversed and cells formed static
epithelial colonies. It remains to be addressed whether the
EMT-like phenomenon was a reflection of the non-metastatic
characteristics specific to H358 cells, or a general
phenomenon of stroma- cancer interaction. 

In the present study, we showed that ADSCs attached to
H358 cells, and triggered EMT-like changes in a similar way
to primary CAFs and MSCs via NOTCH signaling. 
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Figure 3. Adipose-derived mesenchymal stem cells (ADSCs) increased motility of H358 cells. Co-cultured with ADSCs, H358 cells exhibited changes
in cell adhesion and motility. A: Upon direct co-culture with live ADSCs, H358 cells lost homotypic adhesion of epithelial colonies, and became
fibrotic individual cells, but not in indirect co-cultures. B-D: To examine changes in cell motility, scratch assays were performed. H358 cells exhibited
increased cell motility on live ADSCs, but neither on ECM nor in conditioned media. When H358 cells were sorted from live ADSCs by FACS and
plated alone, they immediately formed static epithelial colonies, suggesting that the motility and the morphological changes were reversibly dependent
on live cell-cell contact with ADSCs. Scale bar: 50 μm.
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Figure 4. Epithelial−mesenchymal transition (EMT)-like gene expression in H358 cells. After 48 h of co-culture, H358 cells were sorted from the live
adipose-derived mesenchymal stem cells (direct) and gene expression was compared with that in cells maintained in monoculture (H358), or conditioned
media/ECM (indirect). TWIST and SNAI1, potent EMT inducers, were significantly up-regulated in direct co-culture (A), as were the downstream
mesenchymal markers, VIM and CDH2 (B). Epithelial markers CK19 and CDH1 expression levels showed no significant changes (C), indicating a
biphasic state of both epithelial and mesenchymal characteristics. Immunocytochemistry (D-G: unpublished data from 39) showed that H358 cells formed
epithelial colonies that express high amount of CK19,and very low amount of VIM (D, E). In co-cultures with CAFs, H358 cells expressed both VIM and
CK19 at high levels (F, G). These data suggest that ADSCs and CAFs induced similar EMT-like changes in H358 cells. Scale bar: 50 μm.
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Figure 5. Identification of NOTCH pathway for epithelial−mesenchymal transition (EMT)-like phenomenon. A: To deduce the candidate signaling
pathways underlying the paracrine effects of ADSCs, the effects of direct and indirect co-cultures were compared. Indirect co-cultures with the ECM
reproduced the enhanced attachment only, indicating that enhanced attachment is an event independent from the EMT−like phenomenon. On the
other hand, conditioned media did not induce EMT−like phenomenon, identifying the direct cell−cell signaling between live ADSCs and H358 cells
as the candidate signaling pathway. B: To block the NOTCH pathway, γ−secretase inhibitor was added to the media at 1.0 nΜ on day 2 of co-
culture, and the EMT-like phenomenon was reversed on day 3. A premarked spot (asterisk) shows the same position in the culture dish. C: Summary
of the data suggesting that ADSCs attached to H358 lung cancer cells reciprocally interact with each other to induce EMT-like changes that are
partially affected by NOTCH inhibitor. Scale bar: 50 μm.
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