
Abstract. Background: Integrin α6β4 is a known tumor
antigen; however, its function in different subtypes of thyroid
cancer is not known. This study reports that α6β4 expression is
selectively up-regulated in anaplastic thyroid cancer (ATC)
cells, the most malignant subtype of human thyroid cancer.
Materials and Methods: To assess the contribution of α6β4 in
ATC progression, cell proliferation, motility and soft agar assay
were performed in vitro and a xenograft tumor growth assay
was performed in vivo. Results: Knockdown of β4 integrin
subunit expression by shRNA in ATC cells reduced the
proliferation, migration, and anchorage-independent growth of
ATC cells in vitro and xenograft tumor growth in vivo.
Conclusion: These data suggest that integrin α6β4 contributes
to the development of aggressive forms of thyroid cancer with
poor prognostic potential, such as ATC, and thus may be a
novel therapeutic target for the treatment for this subtype of
thyroid cancer.

Thyroid carcinoma is the most common malignancy of the
endocrine system (1). Long-term survivors of anaplastic
thyroid carcinoma (ATC) are rare (2-4) and have extremely
low 5-year survival rates (5, 6). Metastasis to cervical lymph
nodes is common, and more than half of ATC patients
present with metastasis (2, 3, 7, 8). Initial treatment options
are limited to palliation of asphyxiation by tracheostomy,

which is invariably associated with a poor outcome.
Although ATC is radiation resistant, radiotherapy (RT) is
commonly added to the treatment regimen to help relieve
these airway obstructions. 

Common types of differentiated follicular-cell derived
thyroid tumors include papillary (PTC) and follicular (FTC)
subtypes. Poorly differentiated thyroid carcinomas (PDTC),
including ATC, are less common but represent the highest
grades of malignancy (2, 3, 7-15). Patients with differentiated
thyroid tumors have good long-term survival rates, while
those with the less differentiated subtypes of thyroid tumors,
such as ATC, have a poor prognosis (2, 3, 7-17). This poor
clinical outcome is due to the rapid proliferation and metastasis
of these tumor subtypes (2, 3, 7, 8). The loss of the
sodium/iodide symporter (NIS) expression that imports and
concentrates iodine in thyroid cells, and which is essential
for diagnosis and treatment of both tumor remnants and
distant metastases, has been considered to be one of the
major causes of poor prognosis (18). There have been many
attempts to re-express NIS to re-establish iodide uptake
function in tumor cells (19-23). New treatment strategies, such
as chemotherapy agents (24, 25) bovine serum ribonuclease
(26), bone morphogenic protein (27), p53 gene therapy (28,
29), and re-differentiation gene therapy (19-23), have been
attempted to alter the course of the disease. However, the
results of these trials were disappointing and have not resulted
in clinical application. Therefore, to develop novel target-
specific therapies, it is necessary to understand the molecular
events responsible for the aggressive behavior of ATC.

In this study, it was hypothesized that α6β4 integrin is a
candidate target for thyroid cancer therapy based on its
established role in breast and other cancer progression (30,
31). α6β4 Integrin is a laminin receptor and is ubiquitously
expressed in most epithelial cells (30, 31). Due to its
expression in epithelia, the primary role of α6β4 was
previously thought to maintain the tissue integrity (30, 31).
However, recent reports suggest that α6β4 integrin also plays
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a pivotal role in carcinoma progression, suggesting that α6β4
may exist in “two different functional states” depending on
the surrounding microenvironment (32, 33). In normal
epithelia, α6β4 is mainly localized in hemidesmosomes
(HDs) without having any signaling functions (33).  In the
tumor microenvironment, α6β4 is mobilized from HDs to
actin filament (F-actin)-rich structures such as lamellipodia
and filopodia in a PKC-dependent manner (34, 35). It is
thought that this re-localization of α6β4 from HDs to the
leading edge enhances its signaling function in cancer cells
(34). Once α6β4 becomes signaling competent, it enhances
the ability of carcinoma cells to invade (35, 36), as well as
survive (37, 38), under stress conditions. 

In the current study, the expression of α6β4 integrin was
evaluated in various thyroid cancer cell lines that represent
different subtypes, and it was found that α6β4 expression is
up-regulated in ATC cells compared to other subtypes of
thyroid cancer. Knockdown of β4 integrin expression in ATC
cells efficiently blocked their ability to proliferate, migrate,
and grow in an anchorage-independent manner. This finding
was further extended in vivo by performing xenograft studies
using nude mice. Injection of α6β4-deficient ATC cells
formed dramatically smaller tumor masses than did wild-type
ATC cells. These studies suggest that α6β4 is critical for the
aggressive behavior and tumor progression of ATC, and
could provide a basis for the development of targeted therapy
for the treatment of ATC. 

Materials and Methods

Cell lines and reagents. MDA-MB-435 human cancer cells were
obtained from the Lombardi Breast Cancer Depository at
Georgetown University (Washington, DC, USA). MDA-MB-435
subclones [MDA-MB-435/mock (vector only, clone 6D2) and
MDA-MB-435/β4 (β4 integrin, clone 3A7)] were generated as
previously described (35, 37, 39) and cultured in low glucose
Dulbecco’s modified Eagle’s medium (DMEM) with L-glutamine,
sodium pyruvate, 10% fetal bovine serum (FBS), and 100 U/ml
penicillin and streptomycin. FTC, NPA, TPC-1, and FTC236 human
thyroid cancer cell lines were grown in DMEM with 10% FBS and
1% antibiotic-antimycotic (Gibco BRL, Grand Island, NY, USA) in
5% CO2 at 37°C. ARO and FRO human ATC cell lines were grown
in RPMI-1640 with 10% FBS and 1% antibiotic-antimycotic (Gibco
BRL) in 5% CO2 at 37°C. Integrin β4 (clone H-101) and actin
(clone C-11) antibodies were from Santa Cruz Biotechnology (Santa
Cruz, CA, USA), and Akt and p-Akt (Ser473 and Thr308)
antibodies were from Cell Signaling Technology (Beverly, MA,
USA). Lentivirus expressing shRNA against β4 integrin was from
Sigma (St. Louis, MO, USA), and infection was performed
according to the manufacturer’s protocol.

Western blot analysis. Cells were lysed in 50 mM Tris buffer, pH
7.4, containing 150 mM NaCl, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 1 mM sodium
orthovanadate, 5 mM EDTA, 1 mM phenylmethylsulfonyl fluoride,
and 1% protease inhibitor (Pierce, Rockford, IL, USA), scraped

with a rubber policeman, and collected in 1.5-ml tubes. Protein
concentration was determined using the BCA protein assay kit
(Pierce). Total cellular protein was resolved by 4-20% gradient
SDS-PAGE, transferred to polyvinylidene fluoride membranes, and
incubated with primary antibody. After three 10-minute washes in
50 mM Tris buffer, pH 7.5, containing 0.15 M NaCl and 0.1%
Tween-20, protein was detected with peroxidase-conjugated
secondary antibody and visualized using Luminol and Oxidizing
solutions (Boston Bioproducts, Worcester, MA, USA).

Flow cytometry. Adherent cells were collected in ice cold phosphate-
buffered saline (PBS) and stained with rat anti-human integrin β4
(clone CD104; BD Biosciences) for 30 min. After washing in PBS,
they were stained with Alexa Fluor 488 Goat anti-rat IgG (1:100;
Invitrogen, Carlsbad, CA, USA) on ice for 30 min and washed with
PBS. Samples were analyzed on a FACScan flow cytometer (BD
Biosciences). 

Soft agar assay. FRO cells (1×103) expressing GFP or S100A4
shRNA were suspended in serum (2.5% FBS) with DMEM (2 ml)
containing 0.35% low melt agarose (ISC BioExpress, Kaysville, UT,
USA) and overlaid on a 1 ml layer of 0.75% agar in six-well plates.
Soft agar was overlaid with complete medium (0.5 ml/well), which
was changed every other day. After 14 days, the number of colonies
was quantified by counting 50 fields per well using bright-field
microscopy. 

Cell motility assay. The upper chambers (8-μm pore size) of
transwells (Costar, Cambridge, MA, USA) were coated with
collagen at 4°C. Matrigel (0.5 μg, Collaborative Research, Bedford,
MA, USA) was diluted in cold water and dried onto filters overnight
at room temperature. After washing in PBS, cells were added to the
upper chamber in serum-free DMEM/BSA, and 100 nM
lysophosphatidic acid (Sigma) was added to the lower chamber as a
chemo-attractant. After incubation for 2 h at 37°C in 10% CO2, cells
attached to the bottom of the membrane were stained and counted
using crystal violet. Assays were performed in triplicate and
repeated five times.

Xenograft studies. FRO cells, wild-type, treated with shRNA for
GFP or integrin β4 were grown to ~90–95% confluency in 100 mm
petri dishes, collected, washed twice with PBS, resuspended in
medium, and injected subcutaneously (2×106 cells) into the flanks
of 9-week-old athymic female nude mice (Harlan-Sprague Dawley,
Indianapolis, IN, USA). Mice were divided into three groups: group
A, wild-type FRO cell line; group B, FRO treated with shRNA to
GFP; and group C, FRO treated with shRNA to integrin β4. Tumor
size was measured every three days with calipers in three
dimensions. Tumor size (mm3) was calculated as (3.14 × length ×
width × depth)/6. The experiment was terminated after 21 days
because mice injected with wild-type FRO cells exhibited morbidity.
All studies involving mice were approved by the Yonsei University
College of Medicine Animal Care and Use Committee.

Results

α6β4 is selectively expressed in ATC cell line. To assess the
relationship between α6β4 expression and thyroid carcinoma
progression, the level of β4 integrin expression in thyroid
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cancer cell lines representing different subtypes and
prognoses was monitored (Figure 1). β4 Integrin only pairs
with the α6 integrin subunit and therefore represents α6β4
integrin. The thyroid carcinoma cell lines were derived from
follicular (clone: FTC), papillary (clones: TPC1 and NPA),
and anaplastic (clones: ARO and FRO) subtypes. The ten-
year overall relative survival rates of patients with PTC and
FTC are longer than those with undif ferentiated/ATC (40).
On the other hand, ATC is one of the most lethal human
malignancies (42, 43) with no known targeted therapy. It is
notable that β4 integrin expression was selectively detectable

and up-regulated in the ATC cell lines (clones ARO and
FRO), but at background levels in FTC and PTC cell lines.
MDA-MB-435 mock and β4 integrin transfectants were used
as negative and positive controls for this experiment as this
cell line lack endogenous β4 expression. These studies
suggest that malignant behavior and poor prognosis of ATC
may be functionally linked to α6β4 expression.

Generation of ATC cell lines deficient in β4 integrin expression.
Based on the data that β4 integrin is up-regulated in ATC cell
lines, shRNAs that encode either GFP or β4 integrin using lenti

Figure 2. Reduction of integrin β4 expression by shRNA in anaplastic thyroid carcinoma cell lines. A: Lysates from GFP and β4 integrin shRNA-
transfected anaplastic thyroid cancer cell lines (ARO and FRO) were immunoblotted for β4 integrin and actin. B: Cell surface expression of β4
integrin in ARO, FRO cells, and MDA-MB-435 cell lines was determined by flow cytometry.

Figure 1. Analysis of α6β4 integrin expression levels in thyroid cancer cell subtypes. Follicular (FTC236), papillary (TPC1, NPA), anaplastic thyroid
cancer cell lines (ARO, FRO), MDA-MB-435 mock and β4 integrin transfectants were lysed in RIPA buffer and equal amounts of protein
immunoblotted for β4 integrin and actin.



virus in ARO and FRO ATC cell lines were stably expressed
to selectively knockdown β4 integrin expression. Compared to
control GFP shRNA,  β4 integrin shRNA effectively reduced
the expression of β4 integrin in FRO cells more than 70% as
confirmed by Western blot (Figure 2A) and flow cytometry
(Figure 2B). β4 integrin shRNA had no impact on actin
expression (Figure 2A). The specificity of β4 integrin
knockdown by shRNA was confirmed by measuring cell
surface expression of other integrin subunits such as α5, α3
and β1, which showed no significant difference in cell surface
expression by β4 integrin shRNA expression (data not shown).

α6β4 loss in ATC cells results in reduced cell proliferation,
migration, and anchorage-independent growth. To assess the
role of α6β4 in ATC cell function, first the proliferation of
FRO cells expressing GFP or β4 integrin shRNA was
monitored. Knockdown of β4 integrin expression in FRO
cells dramatically reduced the rate of proliferation up to
approximately 60% by day five compared to GFP shRNA-
expressing control cells (Figure 3). It is notable that the
growth rate of β4 shRNA FRO cells was quite similar to that
of the other differentiated subtype of thyroid carcinoma cell
line (FTC and NPA), that endogenously lacked β4 expression.
Next, the impact of β4 integrin knockdown on colony
formation in soft agar was investigated, because anchorage-
independent growth is necessary for metastasis. FRO cells
that stably express β4 shRNA formed fewer colonies that
were less than 3-fold smaller in size than the colonies formed
by cells that expressed control GFP shRNA (Figure 4).
Finally, the role of α6β4 in FRO cell motility, which is also
critical for metastasis, was tested. MDA-MB-435 cells were
used as a control because this cell line endogenously lacks
α6β4, and stable ectopic expression of β4 integrin
dramatically enhances their motility (Figure 5) (33). Loss of
β4 integrin expression induced 60% less migratory capacity

in FRO cells than the GFP shRNA-expressing cells towards
the lysophosphatidic acid (LPA) chemoattractant (Figure 5).
Taken together, these data indicate that α6β4 is essential for
anchorage-independent growth and migration of ATC cells,
which are important aspects of tumor progression.

Effects of integrin α6β4 knockdown on anaplastic thyroid
tumor growth in nude mice. Based on the findings that knock-
down of integrin α6β4 by shRNA expression inhibited ATC
cell growth and migration in vitro, it was hypothesized that
integrin α6β4 plays a crucial role in ATC tumor formation.
Wild-type FRO cells, FRO cells expressing GFP shRNA and
integrin β4 shRNA were injected subcutaneously into female
athymic nude mice. Tumors formed rapidly within three days
but were of variable size. Tumors formed by FRO cells
expressing integrin β4 shRNA were significantly smaller than
tumors formed by wild-type FRO cells and FRO cells
expressing GFP shRNA. Even more strikingly, there was
decrement of tumor mass 18 days after injection with
FRO/integrin β4 shRNA (Figure 6). These data suggest that
integrin α6β4 plays a pivotal role in ATC progression in vivo.

Discussion

While the role of α6β4 in breast cancer progression is well
established, its functions in different subtypes of thyroid
cancer is not known. This study evaluated the expression of
integrin α6β4 in various subtypes of human thyroid cancer
tissue by Western blot analysis. It was found that α6β4 is
selectively expressed in ATC and is important for ATC cell
growth, migration, and invasion. These data suggest a
potential correlation of α6β4 with the dedifferentiation and
metastatic phenotypes of thyroid cancer, and that α6β4 may
be a promising candidate for the development of new ATC
treatment strategies

Higher expression of α6β4 in the ATC cell line supports
the hypothesis that α6β4 expression is related to the poor
prognosis of patients with dedifferentiated ATC. The data that
ATC cell functions are efficiently blocked by β4 shRNA
further support this hypothesis. It was recently shown that
curcumin, a phytochemical compound, selectively inhibits
α6β4 functions in breast carcinoma cells (44). Thus, multi-
modality approaches targeting α6β4 with curcumin and
inhibitors of other signaling receptors known to be up
regulated in ATC (such as abnormal p53, p-glycoprotein, Cdk
activity) may be an effective treatment for ATC (27, 41, 42).  

Several previous studies suggest that some cases of ATC
may be derived from well-differentiated thyroid carcinoma
(WDTC) (43, 45, 46). This proposition is based on the co-
existence of ATC or PDTC within an area of WDTC tissue,
and the fact that some cases of treated WDTC have recurred
as ATC (47). Moreover, a subset of ATC may be present
within a component of a larger WDTC or may contain
microscopic foci of differentiated carcinoma (48). These
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Figure 3. β4 Integrin shRNA reduces the proliferation of anaplastic
cancer (FRO) cells. Proliferation of follicular (FTC236), papillary
(NPA) and GFP or β4 integrin shRNA-transfected anaplastic cancer
cells (FRO) was measured on days 1, 3 and 5 post-transfection.



findings suggest that dedifferentiation of WDTC may occur
and cause progression to ATC (43, 45-49), but little is known
about the pathophysiological mechanisms of this process.
The current study indicates that the dedifferentiated subtypes
of thyroid cancer may be linked to elevated α6β4 expression.
It will be interesting to evaluate the role of α6β4 in the
process of dedifferentiation of thyroid cancer. α6β4 could be
a key molecule in the differentiation and metastatic switch
during thyroid cancer progression. 

In conclusion, the aggressiveness of ATC is closely related
to the expression of α6β4, and the suppression of α6β4
expression effectively blocks the proliferation, migration, and
tumor formation of ATC cells. Therefore, α6β4 is a potential
novel target for ATC therapy.
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Figure 4. α6β4 is essential for anchorage-independent growth of FRO cells. Representative bright-field images captured at ×10 magnification of FRO
anaplastic thyroid cancer cells expressing either GFP or β4 integrin shRNA. Cells were grown in 0.3% agar with culture medium containing 2.5% FBS
for 2 weeks. Columns, mean of three representative experiments performed in triplicate; bars, SE. Fifty fields per well were counted for each assay. 

Figure 5. Efficient migration of FRO cells towards LPA requires α6β4.
The ability of MDA-MB-435 (mock or β4 integrin-transfected) and FRO
(GFP or β4 integrin shRNA-transfected) to migrate toward 100 nM LPA
was measured using a transwell cell motility assay.
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Figure 6. Knockdown of integrin β4 expression by shRNA reduced tumor growth in vivo. Tumor formation capacity of tumor cell lines (wild-type, GFP
shRNA-, or β4 shRNA-transfected) was measured 21 days after subcutaneous injection. Tumor size = (3.14 × length × width × depth)/6. A: Size of
tumors, B: Images of tumors.
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